

Electrical Engineering Department

NOKIA

People Metering Using Mobile Devices

Yehoraz Kasher Annual EE Projects Contest

Students: Oded Yeruhami Yuval Bahat Supervisor: Rafi Steinberg

June 7th, 2010

Outline

- People metering
- People metering using mobile devices
- Algorithm description
- Our innovations
- Conclusion

Rating Measurement

- Fast growing advertising market
- Based on rating data

- "People Meter" Drawbacks:
 - Designated hardware
 - Small control group

- Hard to know who is watching what

People Metering Using Mobile Devices

- As suggested by MobileRL
 - Overcomes all "People Meter" drawbacks
 - Carried everywhere
 - Can also be used to monitor radio, video,
 music etc.

But -

Privacy must be kept

Fingerprint Creation

"Waveprint" Performance

System performance -As described in the paper

However our problem is more difficult...

- Matching criterion is required
- Recordings in a noisy environment

Threshold Criterion - Metrics

Precision & Recall (per match grade threshold)

True Identification Precision All Identified

True Identification Recall [All Queries

Two query types:

- Good Quality recordings
- Bad Quality recordings

Original Algorithm Results

Bad recordings - very low success rate

Let's have a closer look...

Success Rates Problem

• Main problem appears in "bad recordings"

Reference

Query – "bad recording"

Proposed Solution

Strongest wavelets picking histogram

Innovation #1

After Weighted Wavelet Picking Good Recordings

After Weighted Wavelet Picking

Matching Criterion

Recurrence check

Demanding consistent matches in a sequence of queries

Advantages

- Increases success rates
- Overcomes sporadic noise

P_{true}=93% P_{false}=0.9% For bad recordings! But... Increases size of sent data

Innovation #3 Reducing Signature Size – 1st Solution Google's problem: Database Size Our problem: Sent Data Size Adapting system parameters to our problem Sent query size X Innovation #4 Reducing Signature Size – 2nd Solution Golomb-Rice coding (Golomb & Solomon, 1966) **Cumulative Distribution Function** ~20% Compression 0.5 Geometric Min-Hash 18/22 50 150 200 250 100

Implemented a people metering system using mobile devices

- Carried everywhere

– Not only TV

19/22

Based on "Waveprint" algorithm by Google

Innovation #1 Biasing the wavelet picking

- Match rates $\times \sim 3$

Innovation #3 Reducing sent fingerprint size

Single signiture size: $13.24 \text{ KB} \Rightarrow 1.32 \text{ KB} \Rightarrow 1.06 \text{ KB}$ Sent data size $\times \sim 0.08$

 System is suitable for commercial use For example:

 $P_{true}=90\%$, $P_{false}=0.9\%$, $E[sent size] = \sim 9KB$

Supplied to MobileRL

• A paper in the writing

Acknowledgments

- Rafi Steinberg
- SIPL staff
 - Yair Moshe
 - Nimrod Peleg
- MobileRL
 - Aron Weiss, CTO

