

SIPL SIGNAL & IMAGE PROCESSING LAB

Content-based Organization of Musical Performers using Self Organized Maps

Presenting: Ariel Tangi

Yair Rechter

Supervisor: Gidi Nave

29.6.2011

Introduction

- Most of the people can recognize artists,
 what are the features that makes it possible?
- How can we organize artists based on sound?

Possible Applications

- Musicology research
- Create dynamic playlists suitable with the user's musical preferences

High Level Design

Music Genres

• Each song divided into 3 segments of 30 second

	5 101 11		A.A. S. S.	16		
ROCK		POP	JAZZ	RAP/ HIP-HOP	CLASSIC	ELECTRONIC
Metallica	Red Hot Chili Peppers	Britney Spears	Ella Fitzgerald	OutKast	Bach	Infected Mushroom
Jimi Hendrix	The Doors	Madonna	Frank Sinatra	The Black Eyed Peas	Vivaldi	DJ Tiesto
LTE	Dream Theater	Spice Girls	Sarah Vaughan	Snoop Dogg	Beethoven	Armin Van Buure
Queen	Symphony X	Shakira		50 Cent	Chopin	Prodigy
Coldplay	Guns N Roses			Eminem		Pendulum
Pink Floyd	Nirvana			Jamiroquai		David Guetta
Leonard Cohen	Pearl Jam					
	Aerosmith					

Feature Extraction

- Features represent Timbre, Genre and Mood
 - >MFCC
 - **≻**Spectral analysis
 - **≻**Tempo
- Extracted using MIR Toolbox

MECC Avenage	MFCC Variance
MFCC Average	
MFCC #1	MFCC #1
MFCC #2	MFCC #2
MFCC #3	MFCC #3
MFCC #4	MFCC #4
MFCC #5	MFCC #5
MFCC #6	MFCC #6
MFCC #7	MFCC #7
MFCC #8	MFCC #8
MFCC #9	MFCC #9
MFCC #10	MFCC #10
MFCC #11	MFCC #11
MFCC #12	MFCC #12
MFCC #13	MFCC #13
Spectral Average	Spectral Variance
Centroid	Centroid
Spread	Spread
Skeness	Skeness
Flatness	Flatness
Low energy	Low energy
Roll-off	Roll-off
Zero-Cross	Zero-Cross
Irregularity	Irregularity
Brightness	Brightness

Mel-Freq Cepstral Coeff

- Common tool in MIR and speech recognition
- Approximates the human auditory system

Spectral Features

- First 3 moments of the spectrum
- Spectral Roll-off frequency

Spectral Flatness – noisiness of the spectrum

PCA

- Represent the data in an orthogonal basis in which the variance is maximized
- Better separation and computability improvement
- Finds the best separating features
 - ►MFCC, Flatness, 3rd Moment

High Level Design

Self Organized Map

- 2-Dimensional node grid
- Unsupervised training process
- Useful for high dimensional input visualization

Training

- Choose a segment randomly
- Winner determination

Self Organized Map

Closest node and neighborhood adaptation

Learning rate

 Starting with a large learning rate, gradually decreased to facilitate convergence

$$h_{ci} = \alpha(t) \exp\left(-\frac{\left|r_c - r_i\right|^2}{2\sigma^2(t)}\right)$$

High Level Design

Mapping

Histogram maps for each artist

Artists Ellipse Map

Artists Ellipse Map

Classification

- New (untrained) song from each album
- Find best matching node in the map
- Classification based on artist's histograms

Performance Analysis

Classification

Classifying unknown artists:

Mozart

Billy Holiday

Beatles

Kanye West

2Pac

Pantera

Alice in Chains

Astral Projection

Classifying Unknown Artists

Conclusions

- PCA + SOM for representing music similarities
- We manage to implement approach for music organization
- 50.7% artist classification rate
- 78.5% genre classification rate

Future Work

- Further study for features selection
- Automatic playlist creation
- Similar artists suggestions
- Adapting the algorithm to other fields
 - i.e. painter classification

