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Abstract 
The degradation of speech quality using analog telephone systems is caused by band-limiting 
filters along telephone networks. These filters have a passband from approximately 300 Hz 
up to 3400 Hz. The goal of the presented system is to demonstrate a novel application of 
speech bandwidth extension that increases the quality of telephone speech signals while 
maintaining backward compatibility to currently available telephone networks and telephones. 
This novel application is implemented using the DIOPSIS 740 platform. The details of the 
application design and the implementation, performance benchmarks and the verification 
report, installation and setup instructions, are all presented in this document. The DIOPSIS 
740 platform proves to be a very successful choice for speech bandwidth extension 
implementation due to its powerful DSP processor and rich peripherals set. 
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Introduction 
Public telephone systems reduce the bandwidth of the transmitted speech signal from 
an effective bandwidth of 50-7000Hz to a bandwidth of 300-3400Hz. The reduced 
bandwidth leads to a characteristic thin and muffled sound of the so called telephone 
speech. A unique speech bandwidth extension application, in which the transmission 
from and to the talker’s handset is analog, intended for the public telephony system, is 
demonstrated in this work. This system is based on a research thesis carried out at 
SIPL [ 1] and published in [ 2]. 

The input speech signal is analyzed and its high frequencies are represented by a 
relatively small amount of data (750 bits per second). The low frequencies are 
transferred to the receiver and at the receiver end the wideband speech is 
reconstructed using a concise representation of the high frequencies and the low band 
signal. The concise representation of the high frequencies is based on a frequency 
selective spectral linear prediction technique [ 4].  

This document presents the system based on the DIOPSIS 740 platform implementing 
the speech bandwidth extension (SBE) algorithm.  The document contains the 
following sections: 

 System Layout – Introduces the application that embodies the functionality of 
the bandwidth extension system on a single DIOPSIS JTST board. 

 Using the DIOPSIS 740 Development Board – Presents how DIOPSIS 
processing power and peripherals are used in the application. 

 Memory Management – Presents challenges imposed by the large memory 
demand of the application as well as memory management strategies used in 
the SBE application. 

 ARM-to-mAgic communication – Describes the mechanism for moving 
input/output data to and from mAgic. 

 Design and Development Strategies – Describes the guidelines we followed 
during the design and development of the system. 

 Encountered Difficulties – Presents pitfalls encountered during the 
development. 

 Performance – Presents DSP processor computational power utilization 
together with memory requirements. 

 System Verification  

 Installing the Application – Shows how to install the application on the 
DIOPSIS 740 board and how to test it in real-time. 

 Troubleshooting – Summary of encountered problems and their workarounds. 
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System Layout 
Figure 1 depicts a conceptual layout of the system in the basic configuration. In this 
configuration, the concise representation of high frequencies is transferred to the 
receiver using a dedicated data channel. 

Figure 1. System layout 

 

We used a single DIOPSIS 740 JTST development board. The presented 
implementation demonstrates both the encoder and the decoder modules of the 
system running simultaneously in real-time. The telephone line audio signal and high 
frequency ancillary info are short circuited internally within the mAgic core.  Figure 2 
depicts system layout as implemented on the board. 

Embedding of digital high frequencies information into the lowband signal transmitted 
on the telephone line, thus canceling the need for dedicated digital line is possible. 
Such technique is called data embedding and is based on watermarking concepts. It 
can be used in the current system. More information on this technique and ways of 
possible integration into the presented system is available in [ 1], [ 2] and [ 3]. 
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Figure 2. Implementation layout 

 

The ARM core acquires a wideband input speech signal from the analog audio input 
line. It passes the input speech signal to the mAgic core. mAgic feeds the input signal 
into the encoder that analyses the highband of the input speech signal and produces a 
lowband audio signal suitable for the telephone line transmission together with concise 
digital high frequencies information. The lowband audio signal together with the 
highband frequencies information are fed directly into the decoder  The decoder 
reconstructs the highband of the speech and recombines it with the lowband signal 
received from the simulated telephone line. The output of the decoder is the 
reconstructed wideband speech signal which is transferred back to the ARM core that 
outputs the reconstructed speech to the analog output audio line. 

The presented solution is based on research done in the SIPL laboratory [ 1] [ 2] 
accompanied by MATLAB code. C version of the SBE system was created on the 
DIOPSIS 740 platform. Special effort was made to implement efficient resource 
management in order to fit within strict constraints of memory and processing 
bandwidth of the real-time platform. While starting with a plain C implementation of 
common DSP algorithms, we gradually moved to Atmel's DSP library [ 18] counterparts. 
The improvements achieved both due to the improved memory management and due 
to the usage of DSP library functions, are presented in the Performance section.  
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Encoder/Decoder Structure 

 Figure 3 depicts the conceptual block diagram of the encoder. Wideband speech signal 
is fed into the encoder. In the lower branch high frequencies of the input speech are 
analyzed using selective linear prediction (LP) method. LP coefficients are transformed 
to the line spectral frequencies (LSF) representation. In the upper branch of the 
encoder diagram the input signal is downsampled to the regular telephone line 
bandwidth. The wideband excitation signal is generated from the downsampled 
speech. Based on the LSF coefficient and the excitation signal the gain is estimated. 
The quantized gain and the LSF codebook index are transmitted to the decoder. These 
two parameters, together with the narrowband speech transmitted over the legacy 
telephone line are sufficient for the reconstruction of the speech high frequencies. 

Figure 3. SBE encoder structure overview 

 

 Figure 4 depicts the conceptual block diagram of the decoder. The narrowband speech 
signal is fed into the decoder together with gain and the LSF index. In the lower branch 
the high frequencies of the speech are reconstructed. First the wideband excitation 
signal is generated from the narrowband speech. Then, the LP synthesis is performed 
(the LP coefficients are reacquired from the LSF coefficients) followed by gain 
adjustment. Finally, the reconstructed high frequency components are recombined with 
the narrowband speech signal. 

LSF index 
(8bit/frame) 

Wideband 
speech signal  

Gain 
(4bit/frame)

Low band speech transmitted 
on the legacy telephone line 

  
Downsampling  

  
Wideband 
excitation 
generation  

  
Selective  

LP  

  
Gain 

estimation  

  
LPC to LSF 
conversion  



TELEPHONE BANDWIDTH EXTENSION 

7 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM 

 

Figure 4. SBE decoder structure overview 

 

Detailed explanation on the internals of the encoder and the decoder can be found in 
Appendix A and in [ 1], [ 2]. 

Using the DIOPSIS 740 Development Board 
The DIOPSIS 740 development board [ 16], [ 17] provided a friendly platform for the 
development of our application, both from the processing power point of view and the 
peripherals provided on the board. 

The powerful DSP processor in combination with a highly optimized and rich DSP 
library [ 18], allowed us to achieve, and even surpass, the performance required for this 
real-time application. Only half of the computational power of the mAgic processor is 
actually used.  

We found the seven-segment display useful for displaying various run-time conditions. 

However, working with the simulator, mostly due to slow execution times and inexact 
DMA simulation, was not always convenient. Using the command-line version of the 
simulator in unsynchronized mode partially shortened the simulation time. 

 Figure 5 depicts various blocks mapped to corresponding hardware components. 
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Figure 5. Mapping of application blocks to hardware components 

 

Memory Management 
Almost every block in the encoder/decoder introduces an inherent delay of one frame 
(please notice the headings in most of the blocks in  Figure 16 and  Figure 17 in the 
Appendix A). These delays are required by the algorithm structure. As a consequence, 
a significant amount of memory is required to store the delayed signals.  

To demonstrate this, let's examine the following example: prior to downsampling a 
single frame it should be filtered with a lowpass filter to prevent aliasing. To avoid 
artifacts adjacent to the beginning and the end of the frame, the signal is delayed by a 
single frame and concatenated with the previous and the next frames. Only then, the 
filter is applied to the sequence of three frames and the signal is downsampled. This 
pattern repeats itself almost in every block both in the encoder and the decoder.  

Figure 6. Upsampling using a sliding window of frames 
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Naturally, some memory has to be allocated in order to keep the adjacent frames. We'll 
refer to this memory as "sliding frames storage". The amount of memory required for 
the sliding frames storage is fairly large and can not be sustained only in mAgic's 
internal data memory.  

Extensive memory demand for temporary data, constant tables (mostly codebooks) 
and sliding frame storage made efficient memory management important for the 
success of this application. Several memory usage strategies were formulated:  

 Call stack is used for temporary data storage to allow different blocks of the 
algorithm to reuse temporary memory space. 

 Small constant tables are placed into page 3 memory region in order to free 
pages 0-2 as much as possible, thus preventing the call stack from growing 
into page 3. Keeping the call stack out of page 3 memory region allows us to 
use DSP library routines safely since most of them can not read and write to 
the single ported memory in the same invocation. 

 Large constant tables (codebooks) are placed into mAgic's external memory. 
ARM sets up the constant tables during the system start up using the 
mAgicArmDataExchange library. 

 External memory is used to keep the sliding frames storage for all algorithm 
blocks. 

For more information on the memory system of the DIOPSIS 740 board please refer to 
the Memory Organization chapter in [ 17]. 

Global Variables 

We found no synax for defining C external variables so that the compiler would assume 
other than p0.* prefix (i.e. globals located in page 3 would be treated as located in page 
0 thus causing linkage error). In order to address global variables located in page 3 or 
page 4 memory space from C modules, other then the module containing the definition 
itself, a special effort had to be made. Special inline assembler macro (SYM2PTR) was 
created that explicitly overrides SLAMP pointer page field. We use this macro to get a 
correct pointer to the required symbol. 

External Memory 

Managing data in the external memory turned out to be not as straight forward as it 
seemed at the beginning due to the following pitfalls: 

 All external memory variables had to be defined in a single C file. Otherwise 
the linker would locate these variables in overlapping locations. It appears that 
the linker resets allocated memory pointer for each C module. 

 Macros found in magic.h for managing DMA assume only direct access to 
symbols. They do not provide any way for indirect address calculations as 
required for accessing data in complex data structures, such as accessing 
individual array within two dimensional array. This functionality is required for 
managing the sliding frames storage. 
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In order to manage the sliding frames storage in the external memory, a set of inline 
assembler macros was created that allowed using integers as external memory 
pointers. First, integer representation (linear address) of the symbol located in the 
external memory is acquired. This address can then be easily modified using integer 
arithmetic. Then, DMA transaction is initiated using the newly calculated memory 
address. 

In our initial trial we used SLAMP pointers to address external memory data structures. 
Although this approach gives the required flexibility in manipulating addresses and is 
well supported by the C compiler, it had to be neglected since only 8K of the external 
memory can be addressed in this fashion. 

Large constant tables (codebooks) are located in the external memory as well. Only 
certain part of the codebook table is transferred to the internal mAgic memory at a time. 
To set up the DMA transaction of a sub-block within the codebook, the base+offset 
must be specified. We use the same techniques (i.e. integer as an external memory 
pointer) to address a certain sub-block within the codebook table. 

Since image loader can not initialize constant tables in the mAgic external memory, the 
constant table values are copied from ARM's memory to the mAgic external memory 
using mAgicARMDataExchange library at the application start up. 

Sliding Frames Storage 

Let's examine a common case (depicted in  Figure 6) when an algorithmic block 
requires a sliding frames storage of three frames long. The sliding frames storage is 
managed as a queue of three frames. Incoming frames are added to the head of the 
queue (X[3] is added at t=3) and the frames at the tail of the queue are discarded (X[0] 
is discarded at t=3). The block accesses all three frames centered around X[2] (at t=3) 
(in this common case every block introduces an algorithmic delay of 1 frame). 

Each sliding frames storage structure is maintained using two integer values: base 
pointer and current head element index. At each time slice the current head index is 
advanced using modulo arithmetics.  

ARM-to-mAgic Communication 
Input sampling and audio output are configured according to the ADDA example 
provided with the SDK.  

 Figure 7 depicts audio signal flow between two cores. Input signal, sampled at 16 Khz, 
passed to the mAgic core. After the signal is being encoded, the narrow band version 
of the signal is passed back to the ARM core to be transmitted to the telephone line.  
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Figure 7. Data flow between ARM and mAgic cores 

 

Since it is impossible to configure different output channels of the ADDA to operate at 
different frequencies, we operate all channels at 16 KHz frequency. The lowband 
signal, intended for the telephone channel, is upsampled prior to sending it to ARM 
(still, it lacks the 4 KHz to 8 KHz frequency components).  

Both the narrowband signal and highband information are fed immediately into the 
decoder. The reconstructed wideband signal is being transferred back to the ARM core 
which sends it to the analog output line. 

Three 256 sample queues located in PARM memory are used to support this data flow 
(one for each signal flow illustrated in  Figure 7). These queues keep sample data in 
signed 32 bit integer format. ARM uses this queuing mechanism in a 'sample wise' 
manner, i.e. each sample acquired from the A/D is placed on the ARM-to-mAgic queue 
at every sampling point, and at every sampling point a data sample is moved from 
mAgic-to-ARM queue to the D/A. From mAgic's perspective, the queuing mechanism 
works in a frame-wise fashion, i.e., the samples are acquired or written back in groups 
of 256 samples. 

In case there are not enough samples available on the queue for mAgic to start 
processing, mAgic will busy wait until all 256 samples become available. Once the 
entire frame is ready, it is immediately evicted into mAgic data memory and the ARM-
to-mAgic queue is cleared so that new samples can be written to it. 

In case that the ARM-to-mAgic is full or, on the other hand, there are no samples 
available for the output (should never happen because it would mean that mAgic is not 
keeping up the pace) then the seven segments LED display will indicate which queue 
is not functioning.  

 Figure 8 shows the seven segments LED layout. 'f' segment will turn on if the ARM-to-
mAgic queue is full. 'g' segment will turn on if the mAgic-to-ARM reconstructed signal 
queue is empty and 'e' segment will turn on if the mAgic-to-ARM telephone line signal 
queue is empty. It should be stressed that the seven segments display is used for the 
debugging and malfunction detection purposes only. 
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Figure 8. seven segments LED layout 

 

Design and Development Strategies  
The following guidelines were formulated and used during the design and the 
implementation of the system: 

 A Major part of the system is implemented in C. Some parts of code are written 
in inline assembler. (Inline assembler was used mostly for pointer 
manipulations and custom DMA invocations as described in the Memory 
Management chapter). 

 DSP library routines are used extensively due to highly efficient implementation 
that is incomparably faster and results in much smaller code size then regular 
C implementation. 

 eCos OS is used, mostly due to its stdio library that allowed easy message 
output of textual data throughout development/debugging process. We 
would've used MARMOS, had it supported stdio like output to the MADE 
simulator output window and gdb output window, when working with the 
development board. 

 We used command line (armsim) simulator in the non-synchronized mode to 
overcome poor simulator performance which is inappropriate for debugging 
large systems under MADE environment (speedup of approx. x30 compared to 
the MADE environment). Auxiliary debug library was developed to allow 'debug 
prints' from mAgic that allowed easier debugging with the command line 
simulator. 

 Each algorithmic block is implemented in a separate C file. 

Additional memory usage strategies can be found in the Memory Management chapter. 

Encountered Difficulties  
Below is a summary of the pitfalls encountered throughout the development and 
debugging process: 

Variable Allocation Problems 
 We didn’t find a way to reference global variables defined in page 3 or 4 from C 

modules, other than the module in which the global is declared. It seems that 
when using extern keyword, the compiler always assume p0.* variable. In 
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order to address global variables located in page 3 or page 4 memory space 
from C modules, other then the module containing the definition itself, a special 
effort had to be made. A special inline assembler macro (SYM2PTR) was 
created that explicitly overrides SLAMP pointer page field. We use this macro 
to get a correct pointer to the required symbol. 

 Complex data structures in the external memory can not be addressed using 
the existing macros in the magic.h. E.g., addressing a certain array in the two 
dimensional array located in the external memory is not possible. A set of inline 
assembler macros was created that made it possible to use plain integers as 
external memory pointers and allowed explicit memory address calculations 
using plain integer arithmetcs. 

 Defining multiple external memory variables in several different C modules 
causes the linker to allocate these variables in the overlapping memory 
spaces. To workaround this problem, we defined all external memory variables 
in a single C module. 

DSP Library 
 IIR filtering is used to shape excitation signal into needed spectral envelope 

(see WB LP Synthesis block in  Figure 17). The IIR coefficients change every 
frame to reflect a new spectral envelope that is updated every frame. Changing 
the filter coefficients on the fly caused a disturbing noise in the resulting signal.  

In order to produce a clean undisturbed signal with new filter coefficients, the 
filter was re-initialized but first half of the previous input frame signal was 
filtered with the new coefficients before filtering the current frame data. This 
way the filter coefficients were updated and the transient effect of re-initializing 
the filter is avoided. Using this approach increases IIR filtering time by the 
factor of x1.5. 

IIR filter function that allows continuous filtering while allowing coefficients 
modification could be useful. It would spare the overhead of bringing the filter 
to its steady state. IIR filtering consumes 19% of the total decoder execution 
time. According to Amdahl's law, the decoder performance would have 
improved by 7%. 

 There is no vector abs function present in the DSP library. We had to 
implement the rectification of the signal using a loop written in C. 

 Different DSP library functions misbehave if the processed data is located in 
single ported memory, i.e. page 3 and page 4 memory regions. It is safe, 
though, to locate input or output only parameters in page 3 and 4. We used 
page 3 for constant tables since they always serve as input parameters. The 
DSP library documentation [ 18] is not always explicit about which kind of 
problems might arise; which usage of DSP library functions is safe, and which 
is not. 



TELEPHONE BANDWIDTH EXTENSION 

14 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM 

Other 
 While implementing sliding frames storage we've tried using an inline function 

that performed modulo division of two integers. We were surprised that 
suddenly the code size of the function grew enormously large. We then found 
out that integer division is poorly supported by mAgic core. We think that 
mentioning this point in the documentation or issuing a compiler warning might 
be useful. 

 Macros found in magic.h, for managing DMA, assume only direct access to 
symbols and do not provide any way for indirect address calculations, as 
required for accessing data in complex data structures. Such is the case when 
accessing individual array within a two dimensional array. This functionality is 
required for managing the sliding frames storage. 

Performance 

Computational power utilization 

Both the decoder and the encoder operate on 256 sample frames. The speech is 
sampled at the rate of 16 KHz meaning that the frames are processed at the rate of 
62.5 frames per second, thus allowing 1,600,000 cycles for processing of a single 
frame.  Currently the entire encoder/decoder loop uses approximately 800,000 cycles.  

We began developing the application from pure C implementation of most of the DSP 
algorithms. Comparing to pure C version of the encoder/decoder, adapting the C code 
to be mAgic aware and using DSP library functions resulted in a speed up of 
approximately x50. 

 Figure 9 and  Figure 10 depict encoder and decoder computational power utilization 
breakdown by functions. Total cycles required for encoding a single frame (1/62.5 sec) 
is 507x103 cycles and for decoding a single frame is 283x103 cycles. Both the encoder 
and the decoder together require approximately 790x103 cycles per frame, which is 
approximately one half of the full mAgic capacity. 
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Figure 9. Functional breakdown of encoder processing power utilization 
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Figure 10. functional breakdown of decoder processing power utilization 
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Memory Requirements 

Table 1   Memory requirements 

Memory type Allocated  
(mAgic words) 

Maximum available 
(mAgic words) 

Page 0-2 2508 6144 
Page 3 1826 2048 
Page 4 390 512 

External memory 22653  
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Program memory 7521 (VLIWs) 8192 

 Figure 11 demonstrates the change in memory requirements corresponding to the 
beginning of the development process versus the final version of the application. It can 
be seen that the code size and the stack size improved dramatically. The total constant 
table sizes increases since some of the algorithms were optimized by using of 
additional constant tables. Large constant tables are affordable, since they are stored 
in the external memory. However, since we intended to avoid code overlaying, the 
code size had to be maintained fewer than 8K of instructions. Since the call stack 
resides in the internal data memory, its size is also limited. 

Figure 11. Improvement in memory demand throughout the development process. 
Memory size is indicated in mAgic words (40 bit floating point) 
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System Verification 
 Figure 12 depicts system setup used to verify the quality of the reconstructed speech. 
A PC sound card output was connected to the IN0 analog audio input line of the 
development board. Several wideband speech signals were played using standard 
playback software on the PC. The reconstructed speech was recorded using standard 
audio recording software and saved to wav files (plain PCM format). Then a group of 
people was asked to evaluate the quality of the reconstructed speech signal. All 
members of this group reported the original and reconstructed speech fragments to be 
of the same quality.  

Both the original speech samples and the reconstructed speech samples can be 
evaluated using the Setup and Demonstration Wizard described in the Installing and 
Running the Application section. 

Figure 12. Verification system setup 
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Installing and Running the Application 
In this section we show how to install and run the SBE application. 

All project files, including the source code, the Setup and Demonstration Wizard and 
documentation can be downloaded as a single package from the web site:  

http://siglab.technion.ac.il/~atmel 

Unzip the contents of the package to a local directory. In the rest of the document we'll 
refer to this local directory as <SBE_ROOT>. 

Setup and Demonstration Wizard 

The Setup and Demonstration Wizard that comes with the application provides fast and 
easy way of getting started. The wizard is accompanied by illustrations that guide you 
through the setup and installation process. Moreover, the wizard provides sample 
audio files and a real-time spectral analysis of the system’s signals. It makes the 
exploration of system performance clear and easy. 

The Setup and Demonstration Wizard is created using MATLAB 7.1 with data-
acquisition toolbox. This wizard can be run either as stand-alone application, on 
machines that have no MATLAB 7.1 with data-acquisition toolbox installed, or as 
regular MATLAB source file. The following sub-sections describe these approaches. 
Please refer to the relevant sub-section. 

Running the Wizard as Stand-alone Application 

1. Install MATLAB Component Runtime by running: 

<SBE_ROOT>\wizard\prerequisites\MCRInstaller.exe 

2. Run the wizard: 

<SBE_ROOT>\wizard\bin\SBE_wizard.exe 

Running the Wizard form MATLAB 7.1 

Simply run the following MATLAB script file: 

<SBE_ROOT>\wizard\src\SBE_wizard.m 

Note: MATLAB data-acquisition toolbox must be installed. 

Running the SBE Application 

Although, the wizard is the recommended way of setting up the application and 
exploring its performance, in this sub-section we provide the necessary instructions for 
installing and testing the application without the help of the wizard. 

1. Connect the JTST board to the power supply. 

2. Connect the RS232 port to the serial port on your PC (see  Figure 15). 
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3. Configure AD/DA sampling rate to 16 KHz sampling frequency by setting the JP1-
JP3 jumpers as indicated in  Table 2   

Table 2   Jumpers settings 

Jumper label Setting 
JP1 HI 
JP2 1 
JP3 LO 

4. Connect speech input/output. The board has 4 stereo audio I/O lines (see  Figure 
15), numbered IN0-IN3 and OUT0-OUT3.  Table 3  shows input/output audio lines 
configuration used by the SBE application. 

Regular input/output configuration may include PC sound card output connected to 
the IN0 line. Standard PC software may be used to play speech samples. 
Speakers may be connected to OUT0-OUT2 so that speech signals at different 
stages of the processing can be evaluated. 

Note: a standard dynamic microphone can not be connected directly to the IN0 line 
due to its output signal level. The microphone signal should be pre-amplified if you 
want to experiment with the real speech. 

Table 3   Jumpers settings 

Line Usage 
IN0 Narrowband input speech signal 

OUT0 Reconstructed speech signal 
OUT1 Narrowband speech (to be transmitted on the 

telephone line) 
OUT2 Unmodified speech as received in IN0 (for reference 

purposes) 
OUT3 Left: reconstructed speech (same as OUT0) 

Right: unmodified speech (same as OUT2) 
This output line is used by the Setup and 

Demonstration Wizard 

5. Start MADE IDE and select ‘DIOPSIS Target’ operating mode as indicated in 
 Figure 13. 

Figure 13. Selecting MADE target mode 

 

6. Open the project from the following location: 

<SBE_ROOT>\src\BE.jpf 

7. The files provided with the package already include the pre-compiled version of the 
application so you do not have to build it. 
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8. Load the application to the board and then run it ( Figure 14 depicts these steps).  

Figure 14. Loading and running the application 

 

9. At this stage, the application is running. Experiment with different input speech 
samples (IN0 line). Evaluate the reconstructed speech signal (OUT0 line). 
Compare it to the original (OUT2 line) and telephone line (OUT1 line) counterparts. 

 

Load 

Run 
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Figure 15. JTST board  

 

Troubleshooting 

The JTST Board 

Problem: The reconstructed speech signal (OUT0 line) is disrupted.  

The unmodified speech (OUT2 line) sounds ok.  

Some segments on the seven segment display may be flashing. 

Solution: The sampling rate is not configured correctly on the board. It should be 
configured to 16 KHz sampling frequency. Refer to  Table 2  for the 
correct jumper settings. 

  

Problem: High frequencies of the reconstructed signal are disrupted. 

Solution: Only speech signals are processed correctly by the application. High 
frequencies reconstruction will be inaccurate if other than speech signals 
are processed, such as music.  
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Problem: All output signals are very weak or can not be heard at all.  

Solution: Make sure the input line signal has signal level suitable for the JTST 
input line. For example, regular dynamic microphones can not be 
connected directly to the IN0 line and have to be pre-amplified.  

The Setup and Demonstration Wizard 

Problem: On the spectral density view, the original and the reconstructed speech 
spectral graphs look exactly the same. 

Solution: Make sure that the OUT3 line on the JTST board is connected to the 
stereo line-in line of the sound card on the PC. In most cases the regular 
microphone line in on the sound cards is mono line. The Setup and 
Demonstration Wizard contains the information on the configuration of 
the line-in sound card line as a default input audio source.  

  

Problem: “mclmcrrt73.dll is missing” error message appears when 
SBE_wizard.exe is launched 

Solution: MATLAB Components Runtime was not installed. Run 
<SBE_ROOT>\wizard\prerequisites\MCRInstaller.exe and try again. 

If the problem persists, try restarting Windows. 

  

Problem: Spectral density view shows only static noise. 

Solution: Make sure that: 

 The JTST board receives input signal. 

 All OUT0-OUT3 lines produce output signals 

 Line-in sound card input line is configured to be the default audio 
for the PC. The Setup and Demonstration Wizard contains the 
information on the configuration of the line-in sound card line as 
a default input audio source. 
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Appendix A – Speech Bandwidth Extension Encoder/Decoder 
Internals 

This section presents a brief overview of the encoder and the decoder internals. Please 
refer to [ 1], [ 2] and [ 3] for more detailed information. 

Most of the works in speech bandwidth extension (SBE) use linear prediction (LP) 
techniques [ 5]. By these techniques, the wideband speech generation is divided into 
two separate tasks. The first task is the generation of a wideband excitation signal, and 
the second task is to determine the wideband spectral envelope, represented by linear 
prediction coefficients (LPCs). Once these two components are generated, wideband 
speech is regenerated by filtering the wideband excitation signal with the wideband 
linear prediction synthesis filter. 

The generation of the wideband excitation signal and the wideband spectral envelope 
can be done by solely using the narrow-band (NB) speech signal [ 6][ 7]. The implicit 
assumption of such an approach is that there is a correlation between the low and high 
frequency bands of the speech signal. Another approach is to code and transmit side 
information about the highband (HB) portion of the speech signal. This approach is 
hybrid, because it artificially regenerates part of the high-frequency information from 
the NB speech signal, and completes the high-frequency information from the side 
information [ 8][ 9][ 10]. In our system the hybrid approach is used because it has the 
potential to provide a higher quality reconstructed wideband speech. 

Spectral Linear Prediction 

Spectral LP, suggested by Makhoul [ 4], is a spectral modeling technique in which the 
signal spectrum is modeled by an all-pole spectrum. In selective (spectral) LP, an all-
pole model is applied to a selected portion of the spectrum. 

In the case of SBE, the selective LP technique is applied to the HB of the original WB 
speech, and the spectral envelope of the HB is computed. If, alternatively, a time 
domain LP analysis is performed on the HB speech, it would require sharp filtering and 
down-sampling of the WB speech. These operations are costly and are completely 
avoided by working in the frequency domain, using the selective LP technique. 

SBE Encoder Structure 

The SBE encoder extracts the HB spectral parameters that will be embedded in the NB 
speech signal. The parameters include a gain parameter and spectral envelope 
parameters of the NB for each frame of the original WB speech signal. The explanation 
of the structure of the SBE encoder refers to  Figure 16. The input to the SBE encoder 
is the original WB speech signal, denoted by WBs . The WB speech signal is fed in 
parallel into three branches.  

Upper Branch. In the upper branch, the WB speech is decimated (decimation includes 
filtering), and a NB speech signal, denoted by NBs , is obtained. A time domain LP 
analysis is performed on the NB signal, and the NB excitation signal is obtained by 
inverse filtering the NB speech signal by the analysis filter. The NB excitation signal, 
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denoted by NBe  is then used for WB excitation regeneration. The reconstructed WB 

excitation signal is denoted by ŴBe . 

Middle Branch. In this branch, the WB signal is analyzed by selective LP on the HB, in 
the range 3-8KHz. The selective LP coefficients, HBa , are converted into an LSF (Line 

Spectral Frequencies) representation, HBω . The selective LSFs are quantized using a 
LSF vector quantizer. The LSFs codebook index is one of the transmitted parameters 
via embedding. The quantized selective LSFs are transformed into WB LPCs, as 
explained in the sequel, and are denoted by ˆWBa , which correspond to the 
reconstructed WB spectral envelope. The WB LPCs are used to synthesize the WB 
reconstructed speech signal at the encoder, denoted by WBs . 

Lower Branch. In the lower branch, a gain parameter, denoted by g , is computed by 
minimizing the spectral distance between the original and synthesized WB speech 
signals, in the 3-8KHz frequency range. After gain computation, the gain is quantized, 
and the gain index is transmitted.  

The transmitted parameters in each analysis frame (marked by dashed lines) include 
the LSF codebook index and the gain index (i.e., the indices of ˆHBω  and ĝ ). 

Figure 16. SBE encoder structure 

WBs

NBs NBe

ŴBe

HBa HBω

ˆWBa

HBω

ĝg

WBe

 

 

Wideband Excitation Generation 

The WB excitation can be artificially generated from the NB excitation signal [ 11]. The 
NB excitation signal is the output of inverse filtering by the LP analysis filter, applied to 
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the NB speech signal. As shown in  Figure 16, the NB excitation signal, NBe , is first 
interpolated by a factor of 2 to the WB speech sampling rate. It is known that a non-
linear operation expands the bandwidth, and in this case the interpolated NB excitation 
is passed through a full-wave rectifier, which performs sample by sample rectification. 
The interpolated NB excitation is combined with the HB portion of the rectified 
interpolated NB excitation, to produce an artificially extended WB excitation, denoted 
by WBe . This artificially extended WB excitation has a tilt in the high-frequencies due to 
the rectifier operation. The tilt can be flattened by a whitening filter that performs 
inverse filtering using a LP analysis filter obtained by analyzing the artificially extended 
WB excitation, WBe . The output of the whitening filter, the reconstructed WB excitation 

signal, is denoted by ŴBe . 

LSF Parameters Computation and Quantization 

To compute the HB spectral envelope, selective LP in the 3-8KHz frequency range is 
performed on each frame. The selective LPCs are subsequently converted to a LSF 
representation and are quantized using a LSF codebook. A LSF vector quantizer 
codebook was designed by the well known LBG vector quantization algorithm. 

Wideband Spectral Envelope Computation 

The transmitted side-information for each frame includes a LSF codebook index and a 
gain index. In order to perform WB speech synthesis, the frequency range of the 
spectral envelope should be 0-8KHz. The spectral envelope shape has no importance 
in the 0-3KHz range since the reconstructed WB speech, generated at the decoder, 
contains the NB speech in that frequency range.  

The problem of WB spectral envelope computation is stated as follows: Given the 
selective LPCs (or equivalently LSFs) in the frequency range of 3-8KHz, the task is to 
find WB LPCs in the frequency range 0-8KHz such that the spectral distance between 
the selective and WB spectral envelopes will be small in the frequency range 3-8KHz. 

The method suggested in [ 2] for WB spectral envelope computation is based on a 
symmetric duplication (mirroring) of the upper band into the lower band about the 
frequency 3KHz, followed by spectral LP. 

Given a LSF codebook, the computation of the WB LPCs is done only once, in the 
design stage. After the computation of the WB LPCs codebook, the SBE decoder and 
encoder store the same codebook, and use it to generate the WB spectral envelope 
from a given index of quantized LSF vector. The WB LPCs codebook can be viewed as 
a conversion table between selective LPCs (or equivalently LSFs) that represents the 
spectral envelope in 3-8KHz frequency range and a WB LPCs that represents the 
spectral envelope in 0Khz-8KHz frequency range. 

Highband Gain Computation and Quantization 

The computation of the HB gain is done in order to minimize the spectral distance 
between the spectral envelopes of the original WB speech signal and the reconstructed 
WB speech signal, in the 3-8KHz frequency range. The spectral difference between 
these spectral envelopes originates from two main sources. First, the WB artificially 
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extended excitation is not identical to the original WB excitation. Second, the quantized 
WB LSFs introduce further spectral distortion between the two spectral envelopes. 

The computed gain is quantized for transmission, by a scalar nonuniform quantizer 
of log( )g . 

SBE Decoder Structure 

The SBE decoder generates the reconstructed WB speech from the received NB 
speech signal and the side information. The description of the decoder structure refers 
to  Figure 17. The side information for each frame includes the gain index and the LSF 
codebook index. 

In the lower branch, the reconstructed WB excitation signal is generated from the NB 
speech signal, using the same technique as the technique used in the SBE encoder. In 
the middle branch, the WB LPCs are computed by using the selective LSF index and 
the mapped WB LPCs codebook. The WB artificial excitation together with the gain 
parameter and the WB LPCs are used to synthesize a WB speech signal. The HB part 
of the synthesized WB speech signal is filtered by a HPF, and combined with the 
interpolated NB speech signal, to produce the reconstructed WB speech signal, ŴBs . 

It is desirable that the NB speech, which is input to the SBE decoder, will be close to 
the original NB speech signal generated at the input to the telephone channel. In the 
real world application the NB speech signal which is the output of a channel is close to 
the original NB speech. It is not identical to it because of two reasons. The first reason 
is the spectral distortion introduced by the non ideal channel. The second reason is the 
existence of embedded data in the NB speech in the fully backword compatible version 
of the system. 

Figure 17. SBE decoder structure 

ŴBs

NBs

 

A BPF is used to filter out the enhanced noise. The BPF is specified by a passband in 
the frequencies 100-3400Hz, and two transition bands in the frequencies 0-100Hz and 
3.4-4KHz. The NB telephone speech signal which arrives from the channel, is filtered 
by the BPF. The filtered signal is denoted in  Figure 17 as the NB speech, NBs . 
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Appendix B - Directions for Further Improvements  
 We are aware of several optimizations that could be done with the 

coder/encoder software that can reduce processing power demand. We chose 
not to proceed with these optimizations since only half of the processing power 
is actually used by the system. We estimate that additional x1.2 speed up can 
be achieved with reasonable amount of work. 

 Letting ARM to use PARM memory for accumulating input audio samples and 
reading output audio samples from PARM for playback, appears to be sub-
optimal, since most of the PARM memory is being constantly occupied by 
some data. PARM memory is a valuable resource that can be used for other 
needs as well, e.g., passing debug and trace information to and from mAgic.  
Probably, a better solution would use PARM memory regions exclusively in 
bursts, freeing it right after the burst and letting other parts of the program use 
larger regions of PARM, in a similar exclusive burst like fashion, as well. 

 Implementing data-embedding functionality, if implemented, can allow speech 
bandwidth extension system to operate over legacy telephone lines without 
dedicated low data rate digital channel. 

 The performance of the POLY2LSF algorithm can be significantly improved by 
optimizing parts of it, using assembler or DSP library functions, since it is 
written entirely in C. 

 ARM image size can be reduced by porting the code to MARMOS operating 
system. 

 Current implementation issues the DMA transactions in blocking mode since 
only half of mAgic computational power is utilized. It is possible to issue DMA 
transactions in advance in asynchronous mode thus eliminating stalls caused 
by waiting for the external memory. 
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