

Signal and Image Processing Laboratory, Dept. of Electrical Engineering, Technion - IIT
Haifa 32000 Israel

http://www.sipl.technion.ac.il

Telephone Bandwidth Extension Using DIOPSIS 740

By SIPL Team*

Signal & Image Processing Laboratory, Dept. of Electrical Engineering, Technion – IIT, Israel

Abstract
The degradation of speech quality using analog telephone systems is caused by band-limiting
filters along telephone networks. These filters have a passband from approximately 300 Hz
up to 3400 Hz. The goal of the presented system is to demonstrate a novel application of
speech bandwidth extension that increases the quality of telephone speech signals while
maintaining backward compatibility to currently available telephone networks and telephones.
This novel application is implemented using the DIOPSIS 740 platform. The details of the
application design and the implementation, performance benchmarks and the verification
report, installation and setup instructions, are all presented in this document. The DIOPSIS
740 platform proves to be a very successful choice for speech bandwidth extension
implementation due to its powerful DSP processor and rich peripherals set.

* Oleg Kuybeda, Yair Moshe, Idan Kepten, Yevgeni Litvin, Jonathan Shimonovich are the team leader, team mentor, and
team members, respectively

TELEPHONE BANDWIDTH EXTENSION

2 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Table of Contents
Introduction.. 3

System Layout ... 4
Encoder/Decoder Structure..6

Using the DIOPSIS 740 Development Board ... 7

Memory Management .. 8
Global Variables ...9
External Memory ..9
Sliding Frames Storage..10

ARM-to-mAgic Communication.. 10

Design and Development Strategies ... 12

Encountered Difficulties .. 12
Variables Allocation Problems ...12
DSP Library ..13
Other...14

Performance... 14
Computational power utilization ...14
Memory Requirements ...15

System Verification ... 16

Installing and Running the Application ... 17
The Setup and Demonstration Wizard ...17
Running the Wizard as Stand-alone Application..17
Running the Wizard form MATLAB 7.1 ..17
Running the SBE Application ...17

Troubleshooting .. 20
The JTST Board ...20
The Setup and Demonstration Wizard ...21

Appendix A – Speech Bandwidth Extension Encoder/Decoder
Internals.. 22

Appendix B - Directions for Further Improvements 26

Acknowledgements... 27

References ... 27

TELEPHONE BANDWIDTH EXTENSION

3 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Introduction
Public telephone systems reduce the bandwidth of the transmitted speech signal from
an effective bandwidth of 50-7000Hz to a bandwidth of 300-3400Hz. The reduced
bandwidth leads to a characteristic thin and muffled sound of the so called telephone
speech. A unique speech bandwidth extension application, in which the transmission
from and to the talker’s handset is analog, intended for the public telephony system, is
demonstrated in this work. This system is based on a research thesis carried out at
SIPL [1] and published in [2].

The input speech signal is analyzed and its high frequencies are represented by a
relatively small amount of data (750 bits per second). The low frequencies are
transferred to the receiver and at the receiver end the wideband speech is
reconstructed using a concise representation of the high frequencies and the low band
signal. The concise representation of the high frequencies is based on a frequency
selective spectral linear prediction technique [4].

This document presents the system based on the DIOPSIS 740 platform implementing
the speech bandwidth extension (SBE) algorithm. The document contains the
following sections:

 System Layout – Introduces the application that embodies the functionality of
the bandwidth extension system on a single DIOPSIS JTST board.

 Using the DIOPSIS 740 Development Board – Presents how DIOPSIS
processing power and peripherals are used in the application.

 Memory Management – Presents challenges imposed by the large memory
demand of the application as well as memory management strategies used in
the SBE application.

 ARM-to-mAgic communication – Describes the mechanism for moving
input/output data to and from mAgic.

 Design and Development Strategies – Describes the guidelines we followed
during the design and development of the system.

 Encountered Difficulties – Presents pitfalls encountered during the
development.

 Performance – Presents DSP processor computational power utilization
together with memory requirements.

 System Verification

 Installing the Application – Shows how to install the application on the
DIOPSIS 740 board and how to test it in real-time.

 Troubleshooting – Summary of encountered problems and their workarounds.

TELEPHONE BANDWIDTH EXTENSION

4 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

System Layout
Figure 1 depicts a conceptual layout of the system in the basic configuration. In this
configuration, the concise representation of high frequencies is transferred to the
receiver using a dedicated data channel.

Figure 1. System layout

We used a single DIOPSIS 740 JTST development board. The presented
implementation demonstrates both the encoder and the decoder modules of the
system running simultaneously in real-time. The telephone line audio signal and high
frequency ancillary info are short circuited internally within the mAgic core. Figure 2
depicts system layout as implemented on the board.

Embedding of digital high frequencies information into the lowband signal transmitted
on the telephone line, thus canceling the need for dedicated digital line is possible.
Such technique is called data embedding and is based on watermarking concepts. It
can be used in the current system. More information on this technique and ways of
possible integration into the presented system is available in [1], [2] and [3].

High frequencies info
(using a dedicated channel)

750 bits/sec

High
Frequencies

Analysis

Speech Signal
0 Khz - 8 Khz

Speech
Reconstruction

Reconstructed
Speech Signal
0 Khz - 8 Khz

Low-band signal
(using telephone channel)

0 Khz - 4 Khz

TELEPHONE BANDWIDTH EXTENSION

5 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 2. Implementation layout

The ARM core acquires a wideband input speech signal from the analog audio input
line. It passes the input speech signal to the mAgic core. mAgic feeds the input signal
into the encoder that analyses the highband of the input speech signal and produces a
lowband audio signal suitable for the telephone line transmission together with concise
digital high frequencies information. The lowband audio signal together with the
highband frequencies information are fed directly into the decoder The decoder
reconstructs the highband of the speech and recombines it with the lowband signal
received from the simulated telephone line. The output of the decoder is the
reconstructed wideband speech signal which is transferred back to the ARM core that
outputs the reconstructed speech to the analog output audio line.

The presented solution is based on research done in the SIPL laboratory [1] [2]
accompanied by MATLAB code. C version of the SBE system was created on the
DIOPSIS 740 platform. Special effort was made to implement efficient resource
management in order to fit within strict constraints of memory and processing
bandwidth of the real-time platform. While starting with a plain C implementation of
common DSP algorithms, we gradually moved to Atmel's DSP library [18] counterparts.
The improvements achieved both due to the improved memory management and due
to the usage of DSP library functions, are presented in the Performance section.

DIOPSIS 740 JTST Development Board

mAgic core

High frequencies info
(simulating dedicated

digital channel)

Reconstructed
wideband

speech signal

Low-band signal
(simulating telephone

channel)

Encoder

ARM7 core Wideband
speech signal

Decoder

Low band
speech

transmitted on
the legacy

telephone line

1

2

3

TELEPHONE BANDWIDTH EXTENSION

6 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Encoder/Decoder Structure

 Figure 3 depicts the conceptual block diagram of the encoder. Wideband speech signal
is fed into the encoder. In the lower branch high frequencies of the input speech are
analyzed using selective linear prediction (LP) method. LP coefficients are transformed
to the line spectral frequencies (LSF) representation. In the upper branch of the
encoder diagram the input signal is downsampled to the regular telephone line
bandwidth. The wideband excitation signal is generated from the downsampled
speech. Based on the LSF coefficient and the excitation signal the gain is estimated.
The quantized gain and the LSF codebook index are transmitted to the decoder. These
two parameters, together with the narrowband speech transmitted over the legacy
telephone line are sufficient for the reconstruction of the speech high frequencies.

Figure 3. SBE encoder structure overview

 Figure 4 depicts the conceptual block diagram of the decoder. The narrowband speech
signal is fed into the decoder together with gain and the LSF index. In the lower branch
the high frequencies of the speech are reconstructed. First the wideband excitation
signal is generated from the narrowband speech. Then, the LP synthesis is performed
(the LP coefficients are reacquired from the LSF coefficients) followed by gain
adjustment. Finally, the reconstructed high frequency components are recombined with
the narrowband speech signal.

LSF index
(8bit/frame)

Wideband
speech signal

Gain
(4bit/frame)

Low band speech transmitted
on the legacy telephone line

Downsampling

Wideband
excitation
generation

Selective

LP

Gain

estimation

LPC to LSF
conversion

TELEPHONE BANDWIDTH EXTENSION

7 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 4. SBE decoder structure overview

Detailed explanation on the internals of the encoder and the decoder can be found in
Appendix A and in [1], [2].

Using the DIOPSIS 740 Development Board
The DIOPSIS 740 development board [16], [17] provided a friendly platform for the
development of our application, both from the processing power point of view and the
peripherals provided on the board.

The powerful DSP processor in combination with a highly optimized and rich DSP
library [18], allowed us to achieve, and even surpass, the performance required for this
real-time application. Only half of the computational power of the mAgic processor is
actually used.

We found the seven-segment display useful for displaying various run-time conditions.

However, working with the simulator, mostly due to slow execution times and inexact
DMA simulation, was not always convenient. Using the command-line version of the
simulator in unsynchronized mode partially shortened the simulation time.

 Figure 5 depicts various blocks mapped to corresponding hardware components.

LSF index
(8bit/frame)

Low band
speech

transmitted
on the
legacy

telephone

Gain
(4bit/frame)

Reconstructed wideband speech
Upsampling

Wideband
excitation
generation

Wideband

LP
synthesis

High-pass

filter

TELEPHONE BANDWIDTH EXTENSION

8 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 5. Mapping of application blocks to hardware components

Memory Management
Almost every block in the encoder/decoder introduces an inherent delay of one frame
(please notice the headings in most of the blocks in Figure 16 and Figure 17 in the
Appendix A). These delays are required by the algorithm structure. As a consequence,
a significant amount of memory is required to store the delayed signals.

To demonstrate this, let's examine the following example: prior to downsampling a
single frame it should be filtered with a lowpass filter to prevent aliasing. To avoid
artifacts adjacent to the beginning and the end of the frame, the signal is delayed by a
single frame and concatenated with the previous and the next frames. Only then, the
filter is applied to the sequence of three frames and the signal is downsampled. This
pattern repeats itself almost in every block both in the encoder and the decoder.

Figure 6. Upsampling using a sliding window of frames

XM Memory
Constant tables,
Sliding Frames

Storage

ADDA
Analog

audio I/O

mAgic
Executes

encoder/decoder

Seven-segment
display

Reflects system
state

PARM Memory
I/O queues

ARM7
Handles
ADDA

X[2]

X[1]

X[0]

Upsample

t=2

Y[2]

X[3]

X[2]

X[1]

Upsample

t=3

Y[3]

TELEPHONE BANDWIDTH EXTENSION

9 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Naturally, some memory has to be allocated in order to keep the adjacent frames. We'll
refer to this memory as "sliding frames storage". The amount of memory required for
the sliding frames storage is fairly large and can not be sustained only in mAgic's
internal data memory.

Extensive memory demand for temporary data, constant tables (mostly codebooks)
and sliding frame storage made efficient memory management important for the
success of this application. Several memory usage strategies were formulated:

 Call stack is used for temporary data storage to allow different blocks of the
algorithm to reuse temporary memory space.

 Small constant tables are placed into page 3 memory region in order to free
pages 0-2 as much as possible, thus preventing the call stack from growing
into page 3. Keeping the call stack out of page 3 memory region allows us to
use DSP library routines safely since most of them can not read and write to
the single ported memory in the same invocation.

 Large constant tables (codebooks) are placed into mAgic's external memory.
ARM sets up the constant tables during the system start up using the
mAgicArmDataExchange library.

 External memory is used to keep the sliding frames storage for all algorithm
blocks.

For more information on the memory system of the DIOPSIS 740 board please refer to
the Memory Organization chapter in [17].

Global Variables

We found no synax for defining C external variables so that the compiler would assume
other than p0.* prefix (i.e. globals located in page 3 would be treated as located in page
0 thus causing linkage error). In order to address global variables located in page 3 or
page 4 memory space from C modules, other then the module containing the definition
itself, a special effort had to be made. Special inline assembler macro (SYM2PTR) was
created that explicitly overrides SLAMP pointer page field. We use this macro to get a
correct pointer to the required symbol.

External Memory

Managing data in the external memory turned out to be not as straight forward as it
seemed at the beginning due to the following pitfalls:

 All external memory variables had to be defined in a single C file. Otherwise
the linker would locate these variables in overlapping locations. It appears that
the linker resets allocated memory pointer for each C module.

 Macros found in magic.h for managing DMA assume only direct access to
symbols. They do not provide any way for indirect address calculations as
required for accessing data in complex data structures, such as accessing
individual array within two dimensional array. This functionality is required for
managing the sliding frames storage.

TELEPHONE BANDWIDTH EXTENSION

10 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

In order to manage the sliding frames storage in the external memory, a set of inline
assembler macros was created that allowed using integers as external memory
pointers. First, integer representation (linear address) of the symbol located in the
external memory is acquired. This address can then be easily modified using integer
arithmetic. Then, DMA transaction is initiated using the newly calculated memory
address.

In our initial trial we used SLAMP pointers to address external memory data structures.
Although this approach gives the required flexibility in manipulating addresses and is
well supported by the C compiler, it had to be neglected since only 8K of the external
memory can be addressed in this fashion.

Large constant tables (codebooks) are located in the external memory as well. Only
certain part of the codebook table is transferred to the internal mAgic memory at a time.
To set up the DMA transaction of a sub-block within the codebook, the base+offset
must be specified. We use the same techniques (i.e. integer as an external memory
pointer) to address a certain sub-block within the codebook table.

Since image loader can not initialize constant tables in the mAgic external memory, the
constant table values are copied from ARM's memory to the mAgic external memory
using mAgicARMDataExchange library at the application start up.

Sliding Frames Storage

Let's examine a common case (depicted in Figure 6) when an algorithmic block
requires a sliding frames storage of three frames long. The sliding frames storage is
managed as a queue of three frames. Incoming frames are added to the head of the
queue (X[3] is added at t=3) and the frames at the tail of the queue are discarded (X[0]
is discarded at t=3). The block accesses all three frames centered around X[2] (at t=3)
(in this common case every block introduces an algorithmic delay of 1 frame).

Each sliding frames storage structure is maintained using two integer values: base
pointer and current head element index. At each time slice the current head index is
advanced using modulo arithmetics.

ARM-to-mAgic Communication
Input sampling and audio output are configured according to the ADDA example
provided with the SDK.

 Figure 7 depicts audio signal flow between two cores. Input signal, sampled at 16 Khz,
passed to the mAgic core. After the signal is being encoded, the narrow band version
of the signal is passed back to the ARM core to be transmitted to the telephone line.

TELEPHONE BANDWIDTH EXTENSION

11 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 7. Data flow between ARM and mAgic cores

Since it is impossible to configure different output channels of the ADDA to operate at
different frequencies, we operate all channels at 16 KHz frequency. The lowband
signal, intended for the telephone channel, is upsampled prior to sending it to ARM
(still, it lacks the 4 KHz to 8 KHz frequency components).

Both the narrowband signal and highband information are fed immediately into the
decoder. The reconstructed wideband signal is being transferred back to the ARM core
which sends it to the analog output line.

Three 256 sample queues located in PARM memory are used to support this data flow
(one for each signal flow illustrated in Figure 7). These queues keep sample data in
signed 32 bit integer format. ARM uses this queuing mechanism in a 'sample wise'
manner, i.e. each sample acquired from the A/D is placed on the ARM-to-mAgic queue
at every sampling point, and at every sampling point a data sample is moved from
mAgic-to-ARM queue to the D/A. From mAgic's perspective, the queuing mechanism
works in a frame-wise fashion, i.e., the samples are acquired or written back in groups
of 256 samples.

In case there are not enough samples available on the queue for mAgic to start
processing, mAgic will busy wait until all 256 samples become available. Once the
entire frame is ready, it is immediately evicted into mAgic data memory and the ARM-
to-mAgic queue is cleared so that new samples can be written to it.

In case that the ARM-to-mAgic is full or, on the other hand, there are no samples
available for the output (should never happen because it would mean that mAgic is not
keeping up the pace) then the seven segments LED display will indicate which queue
is not functioning.

 Figure 8 shows the seven segments LED layout. 'f' segment will turn on if the ARM-to-
mAgic queue is full. 'g' segment will turn on if the mAgic-to-ARM reconstructed signal
queue is empty and 'e' segment will turn on if the mAgic-to-ARM telephone line signal
queue is empty. It should be stressed that the seven segments display is used for the
debugging and malfunction detection purposes only.

mAgic core
Original 16KHz

Telephone 8Khz

Reconstructed 16KHz

ARM7 core

TELEPHONE BANDWIDTH EXTENSION

12 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 8. seven segments LED layout

Design and Development Strategies
The following guidelines were formulated and used during the design and the
implementation of the system:

 A Major part of the system is implemented in C. Some parts of code are written
in inline assembler. (Inline assembler was used mostly for pointer
manipulations and custom DMA invocations as described in the Memory
Management chapter).

 DSP library routines are used extensively due to highly efficient implementation
that is incomparably faster and results in much smaller code size then regular
C implementation.

 eCos OS is used, mostly due to its stdio library that allowed easy message
output of textual data throughout development/debugging process. We
would've used MARMOS, had it supported stdio like output to the MADE
simulator output window and gdb output window, when working with the
development board.

 We used command line (armsim) simulator in the non-synchronized mode to
overcome poor simulator performance which is inappropriate for debugging
large systems under MADE environment (speedup of approx. x30 compared to
the MADE environment). Auxiliary debug library was developed to allow 'debug
prints' from mAgic that allowed easier debugging with the command line
simulator.

 Each algorithmic block is implemented in a separate C file.

Additional memory usage strategies can be found in the Memory Management chapter.

Encountered Difficulties
Below is a summary of the pitfalls encountered throughout the development and
debugging process:

Variable Allocation Problems
 We didn’t find a way to reference global variables defined in page 3 or 4 from C

modules, other than the module in which the global is declared. It seems that
when using extern keyword, the compiler always assume p0.* variable. In

TELEPHONE BANDWIDTH EXTENSION

13 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

order to address global variables located in page 3 or page 4 memory space
from C modules, other then the module containing the definition itself, a special
effort had to be made. A special inline assembler macro (SYM2PTR) was
created that explicitly overrides SLAMP pointer page field. We use this macro
to get a correct pointer to the required symbol.

 Complex data structures in the external memory can not be addressed using
the existing macros in the magic.h. E.g., addressing a certain array in the two
dimensional array located in the external memory is not possible. A set of inline
assembler macros was created that made it possible to use plain integers as
external memory pointers and allowed explicit memory address calculations
using plain integer arithmetcs.

 Defining multiple external memory variables in several different C modules
causes the linker to allocate these variables in the overlapping memory
spaces. To workaround this problem, we defined all external memory variables
in a single C module.

DSP Library
 IIR filtering is used to shape excitation signal into needed spectral envelope

(see WB LP Synthesis block in Figure 17). The IIR coefficients change every
frame to reflect a new spectral envelope that is updated every frame. Changing
the filter coefficients on the fly caused a disturbing noise in the resulting signal.

In order to produce a clean undisturbed signal with new filter coefficients, the
filter was re-initialized but first half of the previous input frame signal was
filtered with the new coefficients before filtering the current frame data. This
way the filter coefficients were updated and the transient effect of re-initializing
the filter is avoided. Using this approach increases IIR filtering time by the
factor of x1.5.

IIR filter function that allows continuous filtering while allowing coefficients
modification could be useful. It would spare the overhead of bringing the filter
to its steady state. IIR filtering consumes 19% of the total decoder execution
time. According to Amdahl's law, the decoder performance would have
improved by 7%.

 There is no vector abs function present in the DSP library. We had to
implement the rectification of the signal using a loop written in C.

 Different DSP library functions misbehave if the processed data is located in
single ported memory, i.e. page 3 and page 4 memory regions. It is safe,
though, to locate input or output only parameters in page 3 and 4. We used
page 3 for constant tables since they always serve as input parameters. The
DSP library documentation [18] is not always explicit about which kind of
problems might arise; which usage of DSP library functions is safe, and which
is not.

TELEPHONE BANDWIDTH EXTENSION

14 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Other
 While implementing sliding frames storage we've tried using an inline function

that performed modulo division of two integers. We were surprised that
suddenly the code size of the function grew enormously large. We then found
out that integer division is poorly supported by mAgic core. We think that
mentioning this point in the documentation or issuing a compiler warning might
be useful.

 Macros found in magic.h, for managing DMA, assume only direct access to
symbols and do not provide any way for indirect address calculations, as
required for accessing data in complex data structures. Such is the case when
accessing individual array within a two dimensional array. This functionality is
required for managing the sliding frames storage.

Performance

Computational power utilization

Both the decoder and the encoder operate on 256 sample frames. The speech is
sampled at the rate of 16 KHz meaning that the frames are processed at the rate of
62.5 frames per second, thus allowing 1,600,000 cycles for processing of a single
frame. Currently the entire encoder/decoder loop uses approximately 800,000 cycles.

We began developing the application from pure C implementation of most of the DSP
algorithms. Comparing to pure C version of the encoder/decoder, adapting the C code
to be mAgic aware and using DSP library functions resulted in a speed up of
approximately x50.

 Figure 9 and Figure 10 depict encoder and decoder computational power utilization
breakdown by functions. Total cycles required for encoding a single frame (1/62.5 sec)
is 507x103 cycles and for decoding a single frame is 283x103 cycles. Both the encoder
and the decoder together require approximately 790x103 cycles per frame, which is
approximately one half of the full mAgic capacity.

TELEPHONE BANDWIDTH EXTENSION

15 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 9. Functional breakdown of encoder processing power utilization

Resampling
129027 25%

Rectification
10039 2%

Excitation
gain

estimation
8489 2%

LPC gain
estimation
10250 2% Speech

selective
analysis

111817 22%

LSF best
quantizer

search 67830
13%

Compute
excitation

169328 34%

Figure 10. functional breakdown of decoder processing power utilization

Resampling
119046 42%

Compute
excitation
99321 35%

IIR filter
53259 19%

Rectification
10664 4%

Memory Requirements

Table 1 Memory requirements

Memory type Allocated
(mAgic words)

Maximum available
(mAgic words)

Page 0-2 2508 6144
Page 3 1826 2048
Page 4 390 512

External memory 22653

TELEPHONE BANDWIDTH EXTENSION

16 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Program memory 7521 (VLIWs) 8192

 Figure 11 demonstrates the change in memory requirements corresponding to the
beginning of the development process versus the final version of the application. It can
be seen that the code size and the stack size improved dramatically. The total constant
table sizes increases since some of the algorithms were optimized by using of
additional constant tables. Large constant tables are affordable, since they are stored
in the external memory. However, since we intended to avoid code overlaying, the
code size had to be maintained fewer than 8K of instructions. Since the call stack
resides in the internal data memory, its size is also limited.

Figure 11. Improvement in memory demand throughout the development process.
Memory size is indicated in mAgic words (40 bit floating point)

0
10

00
0

20
00

0
30

00
0

Code Stack Constant TablesM
em

or
y

si
ze

 [m
A

gi
c

w
or

ds
]

Beginning Final

System Verification
 Figure 12 depicts system setup used to verify the quality of the reconstructed speech.
A PC sound card output was connected to the IN0 analog audio input line of the
development board. Several wideband speech signals were played using standard
playback software on the PC. The reconstructed speech was recorded using standard
audio recording software and saved to wav files (plain PCM format). Then a group of
people was asked to evaluate the quality of the reconstructed speech signal. All
members of this group reported the original and reconstructed speech fragments to be
of the same quality.

Both the original speech samples and the reconstructed speech samples can be
evaluated using the Setup and Demonstration Wizard described in the Installing and
Running the Application section.

Figure 12. Verification system setup

PC
Speech Signal

Reconstructed
Speech Signal

Diopsis
Development

Board

TELEPHONE BANDWIDTH EXTENSION

17 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Installing and Running the Application
In this section we show how to install and run the SBE application.

All project files, including the source code, the Setup and Demonstration Wizard and
documentation can be downloaded as a single package from the web site:

http://siglab.technion.ac.il/~atmel

Unzip the contents of the package to a local directory. In the rest of the document we'll
refer to this local directory as <SBE_ROOT>.

Setup and Demonstration Wizard

The Setup and Demonstration Wizard that comes with the application provides fast and
easy way of getting started. The wizard is accompanied by illustrations that guide you
through the setup and installation process. Moreover, the wizard provides sample
audio files and a real-time spectral analysis of the system’s signals. It makes the
exploration of system performance clear and easy.

The Setup and Demonstration Wizard is created using MATLAB 7.1 with data-
acquisition toolbox. This wizard can be run either as stand-alone application, on
machines that have no MATLAB 7.1 with data-acquisition toolbox installed, or as
regular MATLAB source file. The following sub-sections describe these approaches.
Please refer to the relevant sub-section.

Running the Wizard as Stand-alone Application

1. Install MATLAB Component Runtime by running:

<SBE_ROOT>\wizard\prerequisites\MCRInstaller.exe

2. Run the wizard:

<SBE_ROOT>\wizard\bin\SBE_wizard.exe

Running the Wizard form MATLAB 7.1

Simply run the following MATLAB script file:

<SBE_ROOT>\wizard\src\SBE_wizard.m

Note: MATLAB data-acquisition toolbox must be installed.

Running the SBE Application

Although, the wizard is the recommended way of setting up the application and
exploring its performance, in this sub-section we provide the necessary instructions for
installing and testing the application without the help of the wizard.

1. Connect the JTST board to the power supply.

2. Connect the RS232 port to the serial port on your PC (see Figure 15).

TELEPHONE BANDWIDTH EXTENSION

18 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

3. Configure AD/DA sampling rate to 16 KHz sampling frequency by setting the JP1-
JP3 jumpers as indicated in Table 2

Table 2 Jumpers settings

Jumper label Setting
JP1 HI
JP2 1
JP3 LO

4. Connect speech input/output. The board has 4 stereo audio I/O lines (see Figure
15), numbered IN0-IN3 and OUT0-OUT3. Table 3 shows input/output audio lines
configuration used by the SBE application.

Regular input/output configuration may include PC sound card output connected to
the IN0 line. Standard PC software may be used to play speech samples.
Speakers may be connected to OUT0-OUT2 so that speech signals at different
stages of the processing can be evaluated.

Note: a standard dynamic microphone can not be connected directly to the IN0 line
due to its output signal level. The microphone signal should be pre-amplified if you
want to experiment with the real speech.

Table 3 Jumpers settings

Line Usage
IN0 Narrowband input speech signal

OUT0 Reconstructed speech signal
OUT1 Narrowband speech (to be transmitted on the

telephone line)
OUT2 Unmodified speech as received in IN0 (for reference

purposes)
OUT3 Left: reconstructed speech (same as OUT0)

Right: unmodified speech (same as OUT2)
This output line is used by the Setup and

Demonstration Wizard

5. Start MADE IDE and select ‘DIOPSIS Target’ operating mode as indicated in
 Figure 13.

Figure 13. Selecting MADE target mode

6. Open the project from the following location:

<SBE_ROOT>\src\BE.jpf

7. The files provided with the package already include the pre-compiled version of the
application so you do not have to build it.

TELEPHONE BANDWIDTH EXTENSION

19 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

8. Load the application to the board and then run it (Figure 14 depicts these steps).

Figure 14. Loading and running the application

9. At this stage, the application is running. Experiment with different input speech
samples (IN0 line). Evaluate the reconstructed speech signal (OUT0 line).
Compare it to the original (OUT2 line) and telephone line (OUT1 line) counterparts.

Load

Run

TELEPHONE BANDWIDTH EXTENSION

20 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Figure 15. JTST board

Troubleshooting

The JTST Board

Problem: The reconstructed speech signal (OUT0 line) is disrupted.

The unmodified speech (OUT2 line) sounds ok.

Some segments on the seven segment display may be flashing.

Solution: The sampling rate is not configured correctly on the board. It should be
configured to 16 KHz sampling frequency. Refer to Table 2 for the
correct jumper settings.

Problem: High frequencies of the reconstructed signal are disrupted.

Solution: Only speech signals are processed correctly by the application. High
frequencies reconstruction will be inaccurate if other than speech signals
are processed, such as music.

TELEPHONE BANDWIDTH EXTENSION

21 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Problem: All output signals are very weak or can not be heard at all.

Solution: Make sure the input line signal has signal level suitable for the JTST
input line. For example, regular dynamic microphones can not be
connected directly to the IN0 line and have to be pre-amplified.

The Setup and Demonstration Wizard

Problem: On the spectral density view, the original and the reconstructed speech
spectral graphs look exactly the same.

Solution: Make sure that the OUT3 line on the JTST board is connected to the
stereo line-in line of the sound card on the PC. In most cases the regular
microphone line in on the sound cards is mono line. The Setup and
Demonstration Wizard contains the information on the configuration of
the line-in sound card line as a default input audio source.

Problem: “mclmcrrt73.dll is missing” error message appears when
SBE_wizard.exe is launched

Solution: MATLAB Components Runtime was not installed. Run
<SBE_ROOT>\wizard\prerequisites\MCRInstaller.exe and try again.

If the problem persists, try restarting Windows.

Problem: Spectral density view shows only static noise.

Solution: Make sure that:

 The JTST board receives input signal.

 All OUT0-OUT3 lines produce output signals

 Line-in sound card input line is configured to be the default audio
for the PC. The Setup and Demonstration Wizard contains the
information on the configuration of the line-in sound card line as
a default input audio source.

TELEPHONE BANDWIDTH EXTENSION

22 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Appendix A – Speech Bandwidth Extension Encoder/Decoder
Internals

This section presents a brief overview of the encoder and the decoder internals. Please
refer to [1], [2] and [3] for more detailed information.

Most of the works in speech bandwidth extension (SBE) use linear prediction (LP)
techniques [5]. By these techniques, the wideband speech generation is divided into
two separate tasks. The first task is the generation of a wideband excitation signal, and
the second task is to determine the wideband spectral envelope, represented by linear
prediction coefficients (LPCs). Once these two components are generated, wideband
speech is regenerated by filtering the wideband excitation signal with the wideband
linear prediction synthesis filter.

The generation of the wideband excitation signal and the wideband spectral envelope
can be done by solely using the narrow-band (NB) speech signal [6][7]. The implicit
assumption of such an approach is that there is a correlation between the low and high
frequency bands of the speech signal. Another approach is to code and transmit side
information about the highband (HB) portion of the speech signal. This approach is
hybrid, because it artificially regenerates part of the high-frequency information from
the NB speech signal, and completes the high-frequency information from the side
information [8][9][10]. In our system the hybrid approach is used because it has the
potential to provide a higher quality reconstructed wideband speech.

Spectral Linear Prediction

Spectral LP, suggested by Makhoul [4], is a spectral modeling technique in which the
signal spectrum is modeled by an all-pole spectrum. In selective (spectral) LP, an all-
pole model is applied to a selected portion of the spectrum.

In the case of SBE, the selective LP technique is applied to the HB of the original WB
speech, and the spectral envelope of the HB is computed. If, alternatively, a time
domain LP analysis is performed on the HB speech, it would require sharp filtering and
down-sampling of the WB speech. These operations are costly and are completely
avoided by working in the frequency domain, using the selective LP technique.

SBE Encoder Structure

The SBE encoder extracts the HB spectral parameters that will be embedded in the NB
speech signal. The parameters include a gain parameter and spectral envelope
parameters of the NB for each frame of the original WB speech signal. The explanation
of the structure of the SBE encoder refers to Figure 16. The input to the SBE encoder
is the original WB speech signal, denoted by WBs . The WB speech signal is fed in
parallel into three branches.

Upper Branch. In the upper branch, the WB speech is decimated (decimation includes
filtering), and a NB speech signal, denoted by NBs , is obtained. A time domain LP
analysis is performed on the NB signal, and the NB excitation signal is obtained by
inverse filtering the NB speech signal by the analysis filter. The NB excitation signal,

TELEPHONE BANDWIDTH EXTENSION

23 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

denoted by NBe is then used for WB excitation regeneration. The reconstructed WB

excitation signal is denoted by ŴBe .

Middle Branch. In this branch, the WB signal is analyzed by selective LP on the HB, in
the range 3-8KHz. The selective LP coefficients, HBa , are converted into an LSF (Line

Spectral Frequencies) representation, HBω . The selective LSFs are quantized using a
LSF vector quantizer. The LSFs codebook index is one of the transmitted parameters
via embedding. The quantized selective LSFs are transformed into WB LPCs, as
explained in the sequel, and are denoted by ˆWBa , which correspond to the
reconstructed WB spectral envelope. The WB LPCs are used to synthesize the WB
reconstructed speech signal at the encoder, denoted by WBs .

Lower Branch. In the lower branch, a gain parameter, denoted by g , is computed by
minimizing the spectral distance between the original and synthesized WB speech
signals, in the 3-8KHz frequency range. After gain computation, the gain is quantized,
and the gain index is transmitted.

The transmitted parameters in each analysis frame (marked by dashed lines) include
the LSF codebook index and the gain index (i.e., the indices of ˆHBω and ĝ).

Figure 16. SBE encoder structure

WBs

NBs NBe

ŴBe

HBa HBω

ˆWBa

HBω

ĝg

WBe

Wideband Excitation Generation

The WB excitation can be artificially generated from the NB excitation signal [11]. The
NB excitation signal is the output of inverse filtering by the LP analysis filter, applied to

TELEPHONE BANDWIDTH EXTENSION

24 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

the NB speech signal. As shown in Figure 16, the NB excitation signal, NBe , is first
interpolated by a factor of 2 to the WB speech sampling rate. It is known that a non-
linear operation expands the bandwidth, and in this case the interpolated NB excitation
is passed through a full-wave rectifier, which performs sample by sample rectification.
The interpolated NB excitation is combined with the HB portion of the rectified
interpolated NB excitation, to produce an artificially extended WB excitation, denoted
by WBe . This artificially extended WB excitation has a tilt in the high-frequencies due to
the rectifier operation. The tilt can be flattened by a whitening filter that performs
inverse filtering using a LP analysis filter obtained by analyzing the artificially extended
WB excitation, WBe . The output of the whitening filter, the reconstructed WB excitation

signal, is denoted by ŴBe .

LSF Parameters Computation and Quantization

To compute the HB spectral envelope, selective LP in the 3-8KHz frequency range is
performed on each frame. The selective LPCs are subsequently converted to a LSF
representation and are quantized using a LSF codebook. A LSF vector quantizer
codebook was designed by the well known LBG vector quantization algorithm.

Wideband Spectral Envelope Computation

The transmitted side-information for each frame includes a LSF codebook index and a
gain index. In order to perform WB speech synthesis, the frequency range of the
spectral envelope should be 0-8KHz. The spectral envelope shape has no importance
in the 0-3KHz range since the reconstructed WB speech, generated at the decoder,
contains the NB speech in that frequency range.

The problem of WB spectral envelope computation is stated as follows: Given the
selective LPCs (or equivalently LSFs) in the frequency range of 3-8KHz, the task is to
find WB LPCs in the frequency range 0-8KHz such that the spectral distance between
the selective and WB spectral envelopes will be small in the frequency range 3-8KHz.

The method suggested in [2] for WB spectral envelope computation is based on a
symmetric duplication (mirroring) of the upper band into the lower band about the
frequency 3KHz, followed by spectral LP.

Given a LSF codebook, the computation of the WB LPCs is done only once, in the
design stage. After the computation of the WB LPCs codebook, the SBE decoder and
encoder store the same codebook, and use it to generate the WB spectral envelope
from a given index of quantized LSF vector. The WB LPCs codebook can be viewed as
a conversion table between selective LPCs (or equivalently LSFs) that represents the
spectral envelope in 3-8KHz frequency range and a WB LPCs that represents the
spectral envelope in 0Khz-8KHz frequency range.

Highband Gain Computation and Quantization

The computation of the HB gain is done in order to minimize the spectral distance
between the spectral envelopes of the original WB speech signal and the reconstructed
WB speech signal, in the 3-8KHz frequency range. The spectral difference between
these spectral envelopes originates from two main sources. First, the WB artificially

TELEPHONE BANDWIDTH EXTENSION

25 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

extended excitation is not identical to the original WB excitation. Second, the quantized
WB LSFs introduce further spectral distortion between the two spectral envelopes.

The computed gain is quantized for transmission, by a scalar nonuniform quantizer
of log()g .

SBE Decoder Structure

The SBE decoder generates the reconstructed WB speech from the received NB
speech signal and the side information. The description of the decoder structure refers
to Figure 17. The side information for each frame includes the gain index and the LSF
codebook index.

In the lower branch, the reconstructed WB excitation signal is generated from the NB
speech signal, using the same technique as the technique used in the SBE encoder. In
the middle branch, the WB LPCs are computed by using the selective LSF index and
the mapped WB LPCs codebook. The WB artificial excitation together with the gain
parameter and the WB LPCs are used to synthesize a WB speech signal. The HB part
of the synthesized WB speech signal is filtered by a HPF, and combined with the
interpolated NB speech signal, to produce the reconstructed WB speech signal, ŴBs .

It is desirable that the NB speech, which is input to the SBE decoder, will be close to
the original NB speech signal generated at the input to the telephone channel. In the
real world application the NB speech signal which is the output of a channel is close to
the original NB speech. It is not identical to it because of two reasons. The first reason
is the spectral distortion introduced by the non ideal channel. The second reason is the
existence of embedded data in the NB speech in the fully backword compatible version
of the system.

Figure 17. SBE decoder structure

ŴBs

NBs

A BPF is used to filter out the enhanced noise. The BPF is specified by a passband in
the frequencies 100-3400Hz, and two transition bands in the frequencies 0-100Hz and
3.4-4KHz. The NB telephone speech signal which arrives from the channel, is filtered
by the BPF. The filtered signal is denoted in Figure 17 as the NB speech, NBs .

TELEPHONE BANDWIDTH EXTENSION

26 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Appendix B - Directions for Further Improvements
 We are aware of several optimizations that could be done with the

coder/encoder software that can reduce processing power demand. We chose
not to proceed with these optimizations since only half of the processing power
is actually used by the system. We estimate that additional x1.2 speed up can
be achieved with reasonable amount of work.

 Letting ARM to use PARM memory for accumulating input audio samples and
reading output audio samples from PARM for playback, appears to be sub-
optimal, since most of the PARM memory is being constantly occupied by
some data. PARM memory is a valuable resource that can be used for other
needs as well, e.g., passing debug and trace information to and from mAgic.
Probably, a better solution would use PARM memory regions exclusively in
bursts, freeing it right after the burst and letting other parts of the program use
larger regions of PARM, in a similar exclusive burst like fashion, as well.

 Implementing data-embedding functionality, if implemented, can allow speech
bandwidth extension system to operate over legacy telephone lines without
dedicated low data rate digital channel.

 The performance of the POLY2LSF algorithm can be significantly improved by
optimizing parts of it, using assembler or DSP library functions, since it is
written entirely in C.

 ARM image size can be reduced by porting the code to MARMOS operating
system.

 Current implementation issues the DMA transactions in blocking mode since
only half of mAgic computational power is utilized. It is possible to issue DMA
transactions in advance in asynchronous mode thus eliminating stalls caused
by waiting for the external memory.

TELEPHONE BANDWIDTH EXTENSION

27 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

Acknowledgments
We would like to express our gratitude to Professor David Malah for inspiring and
reviewing the project, to all SIPL laboratory staff: Mr. Nimrod Peleg, the SIPL laboratory
chief engineer, Mrs. Avni Ziva and Mr. Rosen Avi who supported our work, to Atmel
Italy and Technion that sponsored our training in Rome and to Atmel's training and
support staff that helped us a lot throughout the development by providing fixes to the
DSP library, code snippets and answering our questions.

References
1. Sagi A., Data embedding in speech signals. M.Sc. thesis, Technion, Dept. of

Electrical Engineering, May 2004,
http://sipl.technion.ac.il/new/Research/Publications/Graduates/Ariel_Sagi/Ariel_Th
esis_final_f.pdf .

2. A. Sagi and D. Malah. Bandwidth extension of telephone-speech aided by data
embedding . Submitted for publication to Journal of Applied Signal Processing,
February 2006.

3. A. Sagi and D. Malah, Data embedding in speech signals using perceptual
masking. XII European Signal Processing Conference - Eusipco, pp. 1658-1660,
September 2004.

4. J. Makhoul. Spectral analysis of speech by linear prediction. IEEE Trans. on Audio
and Electroacoustic, vol. AU-21, no. 3, pp. 140-148, June 1973.

5. J. Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,
63(4):561-580, April 1975.

6. J. A. Fuemmeler, R. C. Hardie, and W. R. Gardner. Techniques for the
regeneration of wideband speech from narrowband speech. EURASIP Journal on
Applied Signal Processing, 4:266-274, 2001.

7. P. Jax and P. Vary. Wideband extension of telephone speech using a hidden
markov model. IEEE Workshop on Speech Coding, pages 133-135, September
2000.

8. A. McCree. A 14 kb/s wideband speech coder with a parametric highband model.
In IEEE Proc. Of ICASSP, volume 4, pages 1153-1156, Istanbul, 2000.

9. A. McCree, T. Unno, A. Anandakumar, A. Bernard, and E. Paksoy. An embedded
adaptive multi-rate wideband speech coder. In IEEE Proc. of ICASSP, volume 4,
pages 2613-2616, Salt-Lake City, UT,May 2001.

10. J. M. Valin and R. Lefebvre. Bandwidth extension of narrowband speech for low
bit-rate wideband coding. IEEE Workshop on Speech Coding, pages 130-132,
September 2000.

11. J. Makhoul and M. Berouti. High-frequency regeneration in speech coding
systems. In Proc. ICASSP, pages 428-431, Washington, DC, 1979.

TELEPHONE BANDWIDTH EXTENSION

28 ATMEL “DSP DESIGN CONTEST 2005” – SIPL TEAM

12. ISO/IEC. Information technology - coding of moving pictures and associated audio
for digital storage media at up to about 1.5 mbit/s-part 3: audio. Technical Report
ISO/IEC 11172-3, ISO, 1992.

13. Q. Cheng and J. Sorensen. Spread spectrum signaling for speech watermarking.
In Proc. ICASSP, pages 1337-1340, 2001.

14. R. N. Bracewell. Discrete hartley transform. J. Opt. Soc. Am., 73(12):1832-1835,
1983.

15. S. Haykin. Adaptive Filter Theory. Prentice Hall, 3'rd edition, 1996.

16. Atmel, JTST AT572D740-DK1 DIOPSIS 740 Development Kit, User Manual,
d7003.pdf

17. Atmel, DIOPSIS 740, Dual-core DSP, AT572D740, d7001.pdf

18. Atmel, DSP Library, User Manual (draft), d7007.pdf

