

Shape Recognition for Multi-Touch Table

Yehoraz Kasher Project Competition

Students: Itay Hubara Amit Nishry

Supervisor: Yair Moshe

Outline

Background

- Multi-touch is starting to appear in every day computers
- New User Interfaces (NUI) are extensively pursued

Motivation

- Existing multi-touch surfaces are expensive
- Current technology is unable to recognize shapes
- Shape recognition enhances user interface

Goals

- Design a shape recognition algorithm
- Track and recognize combined shapes
- Integrate into open-source environment
- Real-Time performance

Challenges

- Noisy input image
- Real-time constrains
- Implementing into open-source environment
- Creating a complete system solution
- Shape combinations and movement

Challenges (cont.)

• Reiapwrbrld view

Outline

System

Hardware

- Multi-Touch Table
- FTIR Technology

Software

 Community Core Vision Client / Server Model

Algorithm

- Image Processing
- Shape Detection
- o Tracking

Application

o Game

Frustrated Total Internal Reflection

Multi-Touch Table

11

Outline

Pre-Processing

≻Cropping

≻Stitching

➤Background removal

➢Noise filtering

➤Thresholding

➤Segmentation

- Global thresholding leads to inconsistent performance
- Each frame has a different dynamic range
- Solution: Adaptive thresholding

Pre-processing (cont.)

IR input

Background removed

Pre-processing (cont.)

Global threshold

Adaptive threshold

Shape Recognition

Feature Extraction

[Zhang & Lu, 2004]

Candidate Features

- Area
- Major & minor axis
- Orientation
- Eccentricity
- 6 Hu moments
- 7 complex moments

Image Moments

Complex moments:

$$c_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + iy)^{p} (x - iy)^{q} \chi(x, y) dxdy$$

 $\chi(x,y)$ - image indicator function

Moments are centralized for translation invariance

Rotation Invariance

• In polar coordinates:

$$c_{pq} = \int_{0}^{\infty} \int_{0}^{2\pi} r^{p+q+1} e^{i(p-q)\theta} \chi(r,\theta) dr d\theta$$

• Rotation by α

- In general
- Which leads to

$$I = \prod_{j=1}^{N} c_{p_{j}q_{j}}^{k_{j}}$$
$$\sum_{j=0}^{n} k_{j} (p_{j} - q_{j}) = 0$$

Hu Moments

- Seven rotation and translation invariant moments
- Useful for visual pattern recognition
- Rotation invariance via complex moments

 $\varphi_1 = c_{11}$ $\varphi_2 = c_{20} \cdot c_{02}$.

[Hu, 1962] [Flusser, Suk & Zitová, 2009]

Shape Recognition

Learning

≻Feature selection

≻Shape model

- Many features \Rightarrow high computation
- Dimensionality reduction required
- Extract features at various locations
- Approx. 50 samples per shape
- Independent Gaussian model

Feature Selection

Exhaustive algorithm based on cross-validation

Feature Selection (cont.)

Initialization

Set n=1 feature(s) out of a total of N features

• Step

Calculate eⁿ_{total} for all possible combinations
 Set n=n+1

Stopping condition

 \circ When $e_{total}^{n+1} > e_{total}^n - \mathcal{E}$

Feature Selection (cont.)

Chosen features:

- o Area
- Major & minor axis
- Eccentricity
- 4 Hu moments: $\varphi_1, \varphi_4, \varphi_6, \varphi_7$
- Empirical selection
- Similar to other shape recognition works

[Hu, 1962] [Sarfraz, 1993]

Shape Recognition

Classification

- Independent Gaussian distributions
- Naïve Bayes Classifier

S

• For each shape s_j and feature f_i assume: $p(f_i | s_j) \Box N(\mu_i, \sigma_i^2)$

$$p(s_j \mid f_1, \dots, f_m) \propto p(s_j) \cdot \prod_{i=1}^m p(f_i \mid s_j)$$
$$= \text{classify}(f_1, \dots, f_m) = \underset{s_j}{\operatorname{argmax}} p(s_j \mid f_1, \dots, f_m)$$

Naïve Bayes Classifier

• Advantages:

- o Generic
- o Fast
- Allows thresholding
- Good performance
- Disadvantages:
 - Long offline learning process

Shape Recognition

Tracking

≻NN tracking

Combined shapes

≻Internal movement

≻False positive detection

- Nearest neighbors tracking
- Simplifies data handling
- Prevents false detections
- Allows complex situations
 - Shape combinations
 - o Internal movement in a combination

Complex Situations

- Shape combinations can appear as one (legitimate) shape
- Possible classification mistakes:

Internal Shape Movement

- Complex shape modification
- Combined shape structure is maintained

Tracking

Complex Situations

Shape Recognition

Application

≻Client / Server

Data transfer protocol

- Many possible applications
- Client / Server model established
- Community Core Vision
- Tangible User Interface Objects (TUIO) protocol for data transfer

Community Core Vision

- Open-source / cross-platform solution for computer vision and machine sensing
- Supports multi-touch input
- Supports multi-camera feed
- Commonly used by developers

TUIO Protocol

- Open framework communication protocol
 and API for tangible multi-touch surfaces
- Supports various multi-touch information

 Location
 - Orientation
 - Acceleration
 - 0 ...
- Commonly used with Community Core Vision

Outline

Implementation

- Simulations (Matlab)
- Implemented into CCV (C++)
 - Adaptive thresholding 0
 - Learning process 0
 - Classification
 - Shape tracking
 - Import / export classifiers
 - Additions to GUI

Implemented into TUIO (C++ & C#)

- Sending shape information
- Distinguishing between touch and shape

Graphical User Interface

Settings	Shapes	
	LOAD SAVE	
TUIO UDI	CLASSIFICATION THRESHOLD: 0.62	
Transfori		SE ())
Track	SHAPE ID: 5	ng: 0 ms 3, 0 amera
OBJECTS		0x240 27.0.0.1 UDP 33 Grid:
Shapes	NUMBER OF SAMPLES: 8	on una:
		43

Learning

Outline

Tangram

- Chinese dissection puzzle with seven shapes
- The objective is to fill a given silhouette
- Demonstrates the algorithm capabilities

SIPL Tangram

Outline

Performance Analysis

Resources

- o Intel i7 processor, 8 GB of memory
- o Three IR cameras, 60 fps
- Real-Time performance
- Computing time < 2 miliseconds per frame

Future Work

- Extending shape recognition
 - Additional shapes
 - Shape color
- Improving camera registration
- Cross-Platform implementations
- Finalize implementation of the demo game

Thanks

Kobi

Yair

Avi

References

- D. Zhang and G. Lu, "Review of shape representation and description techniques", Pattern Recognition, vol. 37, pp. 1–19, 2004.
- M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Information Theory, vol. 8, pp. 179–187, 1962.
- J. Flusser, T. Suk and B. Zitová, "Moments and Moment Invariants", John Wiley & Sons Ltd., 2009.
- C. M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.
- "CCV, Community Core Vision", [Online], <u>http://ccv.nuigroup.com/</u>.
- "TUIO.org", [Online], http://www.tuio.org/