

Speech Enhancement for Speech Recognition using Particle Filtering

Students:

Asa Dan & Elad Shimoni

Instructor:

Hadas Benisty

Motivation

Motivation

Improved Speech Recognition in noisy environment

Proposed Solution #1

A previous project^[1]

General noise filtering, on time domain signals^[2]

- [1] Nadav Merlis, Liora Neeman and Prof. Koby Crammer, "Hebrew Speech Recognition for iPhone", SIPL 2011
- [2] I. Cohen and B. Berdugo, "Speech Enhancement for Non-Stationary Noise Environments", Signal Processing, Vol. 81, No. 11, Nov. 2001, pp. 2403-2418.

Proposed Solution #2

- Filtering in features domain^[1]
- Based on statistical models for the speech and noise signals

[1] R. Haeb-Umbach and J Schmalenstroeer, "A comparison of particle filtering variants for speech feature enhancement", Proc. of Interspeech, 2005

Our Proposed Solution

- Adaption to our Features Enhancement system
- Evaluation using max posterior

Speech Enhancement for Speech Recognition using Particle Filtering

The Features

Noisy speech samples

Features
Extraction

Features Enhancement

Features Extraction

Features Extraction

Notations:

z_k - Noisy sample (at frame # k)

s_k - Clean speech

 x_k - Noise

Resulted Equation:

Assuming additive noise in time domain

$$z_k = s_k + \log(1 + e^{x_k - s_k})$$

Features model

speech features:

assumed to be drawn from a Gaussian Mixture Model (GMM).

Noise model:

"environmental noises" ⇔ Correlation between frames exist

First order Auto Regressive (AR) Process

$$x_k = A \cdot x_{k-1} + w_k$$

Speech Enhancement for Speech Recognition using Particle Filtering

Enhancement Module

Noisy speech samples

Features Extraction

Features Enhancement

Estimation Problem

Input:

Non-linear State System:

$$z_k = A \cdot x_{k-1} + w_k$$

$$z_k - \text{Noisy sample}$$

$$s_k - \text{Clean speech}$$

$$z_k = s_k + \log(1 + e^{x_k - s_k})$$

$$x_k - \text{Noise}$$

 z_k - Noisy sample (at frame # k)

Aim:

Estimate (track) iteratively: x_k from samples- $z_{1:k} = (z_1,...,z_k)$ Following, derive clean speech (s_k) estimation

The state system is highly non-linear => Kalman filter won't work

Solution: Particle Filter (PF)

Monte Carlo algorithm for sequential estimation

Particle Filter

Speech Enhancement for Speech Recognition using Particle Filtering

Classification Module

Noisy speech samples

Features
Extraction

Features Enhancement

Speech Recognition system*

For each word:

- Associate each speech frame with cluster
- Create histogram for occurrences of clusters along each word

^{*}Prof. Koby Crammer, Implemented by Nadav Merlis and Liora Neeman

Speech Enhancement for Speech Recognition using Particle Filtering

Our Main Improvements

Noisy speech samples

Features

Extraction

Features Enhancement

Improvement #1 Enhanced Speech Recognition system

- Using GMM (instead of simple clustering)
 - Advantages:
 - Introduces covariance
 - Adjusted to the speech model we use in the Particle Filter (see next...)

• Word division:

increases success rate by at least 5%

Improvement #2 Max Posterior Estimation

Direct approach:

Problem: Filter can't be ideal

Each system for itself

Optimal solution:

Choose Gaussians by Max Posterior:

$$\widehat{m}_{k} = \arg\max_{m_{k}} \{ p(m_{k} \mid z_{1:k}) \} = f(p(x_{k} \mid z_{1:k}))$$

Gaussian Index at K'th frame

Evaluate using the particle filter results:

$$\widehat{p}(x_k \mid z_{1:k}) = \sum_i w_k^i \cdot \delta_{(x_k - x_k^i)}$$

Improvement #3 **Bias Reduction**

- AR model is adjusted to zero mean signals.
- The noise features are generally not zero mean. $E[X_k] = c \neq 0$

Our solution

$$z_k = s_k + \log(1 + e^{x_k - s_k})$$

$$z'_{k} \triangleq z_{k} - c$$
, $s'_{k} \triangleq s_{k} - c$, $x'_{k} \triangleq x_{k} - c$ $z'_{k} = s'_{k} + \log(1 + e^{x'_{k} - s'_{k}})$

$$z'_{k} = s'_{k} + \log(1 + e^{x'_{k} - s'_{k}})$$

- 1) Estimate noise mean- c.
- 2) Decrease from samples- $z'_k \triangleq z_k c$
- 3) Decrease from the speech Gaussians means- $\mu'_m \triangleq \mu_m c$
- 4) Increase estimation- $\hat{s}_k \triangleq \hat{s}'_{\iota} + c$

Improvement #4 Improved Sampling

- Recall that: $z_k = s_k + \log(1 + e^{x_k s_k})$
 - The noise must be smaller than the noisy speech
- Some of the particles might have zero weights:

$$\mathbf{w}_{k}^{i} = p(z_{k} \mid x_{k}^{i}) \mid_{x_{k}^{i} \geq z_{k}} = 0$$

- A zero weight particle is not effective
- Reduced number of effective particles => worse estimation!
- Sometimes ALL particles receive zero weight...

Improvement #4 Improved Sampling

Our solution

sample in available region

• Draw only from green part

Set initial weight: $w^i_{(initial)} = p(x^i_{k+1} < z_{k+1} \mid x^i_k)$

Speech Enhancement for Speech Recognition using Particle Filtering

Results

Results - Preface

- The results are based on cross-validation over the entire database (ISOLET).
- Results show success rate per SNR.
- 'Clean' achieved success rate without noise.
- 'Noised' achieved success rate without using any filter.

Sample results:

Implementation difference

• Significant improvement is achieved when decreasing the noise estimated mean

Particle Filter-Parameters

Particles Number:

- Obvious improvement as the particles number increase.
- Note: Computation time is linear in the particles number.

Comparison

• Comparison to alternative- using OMLSA Filter on time domain samples

Tank Noise:

Stationary and slow changing

Comparison

• Comparison to alternative- using OMLSA Filter on time domain samples

Babble Talk Noise:

Stationary and rapidly changing signal

Comparison

• Comparison to alternative- using OMLSA Filter on time domain samples

Laugh Noise:

Not stationary

Speech Enhancement for Speech Recognition using Particle Filtering

Summary

Summary

- We used two Building Blocks:
 - Speech Recognition system
 - Enhancement in features domain.
- Introduced our improvements:

Split histograms

- Max posterior estimation

Bias reduction

- Improved sampling

The Results:

- Great improvement (up to 30%) compared to non-filtered signals
- Significant improvement (up to 20%) over using the OMLSA filter, especially when the noise doesn't fit its assumptions

What Could Be Done Next?

- Models improvement:
 - Introduce correlation between speech frames
 - Time Varying AR
 - Continually varying of parameters
 - Different sets of parameters (mainly different bias).
- Improve the speech recognition:
 - Use the inter-frame dependency

Speech Enhancement for Speech Recognition using Particle Filtering

The End

