

Logo Insertion into **Compressed Video**

EE Projects Contest 2006

Performed By: Assaf Tzabari

Itai Shpak

Supervisors: Naama Hait

Dror Porat Logo Insertion

2006June

Motivation

- Naive solution available in market
- Critical problems
 - High computational complexity
 - Damage to Image quality
 - Expensive
- New solution is required!

Project Objective

 Design and implementation of an efficient logo insertion system in the compressed domain

Presentation Layout

- Image and video compression fundamentals
- Logo insertion
- Further performance improvements
- Dynamic logo insertion (Video in Video)
- Conclusions

Introduction

Image & Video Compression Fundamentals

Redundancy in images & video signals:

- Spatial redundancy
- Subjective redundancy (sensitivity of the human visual system)
- Statistical redundancy
- Temporal redundancy (video)

Motion Compensation (MC)

Previous frame

Prediction

Motion Compensation (MC) (cont.)

Differences from previous frame

Differences from prediction

Logo Insertion - Naive Solution

Logo Insertion - Naive Solution

MC-DCT: Motion compensation in compressed domain

Reference: [1] N. Merhav, V. Bhaskaran, A fast algorithm for DCT-domain inverse motion compensation, Proceeding of ICASSP (May 1996), Atlanta, GA, 2307-2310.

[2] Shih-Fu Chang and David G. Messerschmitt, "Manipulation and Compositing of MC-DCT Compressed Video" IEEE Journal of Selected Areas in Communications, vol. 13, no. 1, pp. 1–11, 1995.

2006June

Motion Compensation in Compressed Domain (MC-DCT)

Prediction DCT coeff. block is obtained from up to 4 adjacent blocks of the reference frame

Performed on blocks in logo region only

MC-DCT Motion compensation in compressed domain

2006June

Compressed Domain Logo Insertion

Further Performance Improvements

- Goals
 - 1. Reduce computational complexity
 - 2. Improve image quality for a given bit rate
 - 3. Control output bit rate

1. Reduce Computational Complexity

- A typical logo is up to 10% of the image size in a video
- Most of the image is not changed by the logo insertion
- How can we save computations?

'Constant' Blocks and 'Variable' Blocks (cont.)

Example: - 'constant' and 'variable' blocks map

Logo area

White – 'variable' blocks

Black – 'Constant' blocks

2006June

Compressed Domain Logo Insertion

System parameters

- Pentium 4, 3GHz
- Streams parameters
 - Resolution 352X240 pixels
 - 150 frames
 - Bit rate 2MBit/sec or 4MBit/sec

2006June

'Constant' Blocks and 'Variable' Blocks (cont.)

- Computational complexity of partial encoder is reduced by 70%
- Compressed domain encoding saves 30-70% of encoding computations

- Step 1 calculate error with zero motion vector
- Step 2 compare to current error
- Step 3 zero motion vector if the error reduced

Zero Motion Vectors

- Bit rate reduced while PSNR is the same
- Time complexity is not affected

- Output with zero motion vectors ("football" with SIPL logo) 2006June
 Logo Insertion
- Output without zero motion vectors ("football" with SIPL logo"

3. Control Output Bit Rate

Problem: bit rate is significantly changed

- □ Input stream "flower garden" 4Mbit/sec
- Output with zero motion vectors ("flower garden" with subtitle logo)
- Dutput withozhorg metion vectors ("flower garden" with subtille of sertion

Rate Control

MPEG2-TM5 rate-control algorithm

- Estimates complexity of current frame using complexity of previous frame of the same type
- Determines quantization level
- Produce target bit rate

Rate Control (cont.)

Bit rate maintained

Output without zere motion vectors ("football" with subtitle logo Dogo Insertion

Zero Motion Vectors with Rate Control

- Zero motion vectors improves the PSNR, rate control keeps the rate
- PSNR in logo region increased, PSNR of image slightly changes

Output with zero motion vectors
Output without zero motion vectors

Conclusions

- 'Constant' and 'variable' blocks mapping significantly reduces computational complexity
- Rate control is necessary for maintaining bit rate
- Selectively resetting motion vectors improves PSNR

Run time reduced by 80%

- Naive solution
- Compressed domain with zero motion vectors and RC ("football" with subtitle logo)

2006June

Dynamic Logo (Video in Video)

Dynamic Logo Insertion

Dynamic Logo Insertion (cont.)

Assumption: dynamic logo input is not compressed
Each 'constant'/'variable' map is built from the mask of the current logo frame and the maps of its reference frames

Insertion unit for dynamic logo:

Changing Motion Vectors

 MVs change is made on MBs that are not on the logo's support, but their MV points to the logo's support on the reference frame.

Changing Motion Vectors (cont.)

Changing Motion Vectors (cont.)

PSNR OUT LOGO AREA [dB]

COMPRESSED DOMAIN WITHOUT CHANGING MVs

COMPRESSED DOMAIN WITH CHANGING MVs

2006June

Fast and effective logo insertion solution

Compressed domain advantage

Unique solution for market needs