

H.264 Post Processing for Flicker Reduction

Dimitry Kletsel, Yair Kuszpet Supervisors: Yair Moshe, Dr. Avi Levy In association with Intel-Oplus

18/07/2007

Outline

- Video Coding. MPEG2 and H.264
- Coding Artifacts
- Temporal Artifacts in MPEG2
- The Temporal Flicker Artifact in H.264
- Nonadaptive Approach to Flicker Reduction
- Adaptive Approach to Flicker Reduction
- Results, Conclusion, and Future Work

Project Goal

- Characterization of H.264-encoded video artifacts
- Development and examination of suitable Post-Processing techniques

MPEG2 Block Diagram

H.264 Deblocking Filter

- Reduces blocking artifact
- Operates in-loop therefore more effective than post processing
- Adaptive filtering
- Significant computational complexity
- 5-15% improvement in bitrate per given quality compared to unfiltered video

H.264 Intra Prediction

Exploit spatial correlation between adjacent blocks in intra frames

H.264 Coding Artifacts

- Blocking reduced due to deblocking filter
- Ringing not observed, due to 4x4 blocks & filter
- Blurring only at very low bitrates
- Color bleeding wasn't observed (4x4 blocks)
- Temporal discontinuities
 - Most noticeable artifact in H.264
 - Include a wide range of phenomena. No agreement in the literature on terminology or causes Mobile 250Kbps

MPEG2 - Temporal Post Processing Methods

- Delcorso et al., Mosquito Noise Reducer, 2002
- Atzori et al., Adaptive Anisotropic Filter, 2002
- Coudoux et al., Temporal Busyness Post Processor, 2003
- Most literature deals with MPEG2 temporal discontinuities
- Temporal discontinuities characterization not relevant to H.264
 - Practically no ringing in H.264
 - "Temporal discontinuities" is too wide a term

H.264 Flicker

- Noticeable temporal discontinuity around intra frames
- Intra frame may be sharper or more blurred than preceding inter frame
- Intra frame requires different bitrate than inter frames
- Most noticeable in low-medium bitrates

Flicker in the literature

• Fan et al., 2002

- All-intra video sequences
- Attribute flicker to changes in intra prediction modes
- Propose non-compliant encoder modification
- Referenced measure
 - Compare differences in adjacent frames in encoded and original videos

$$\begin{split} \delta_{orig} &= \left| f_{I} - f_{I-1} \right| \qquad \delta_{encoded} = \left| \hat{f}_{I} - \hat{f}_{I-1} \right| \qquad \hat{f}_{I} = coded \ frame (\#I) \\ flicker &= avg \left| \delta_{orig} - \delta_{encoded} \right| \qquad f_{I} = original \ frame (\#I) \end{split}$$

Flicker in the literature – cont'd

- Later works treat videos with periodically-inserted intra frames
- Most use encoder modifications:
 - Sakaida et al., 2004 change intra prediction mode selection, and encode repeatedly with finer quantization
 - Chun et al., 2006 change intra pred. mode selection
 - Chono et al., 2006 modify quantization levels
- Yang, Park, Jeon, 2006 preprocessing by Kalman filter (all intra)
- All works use (roughly) same objective measure

Examination of Flicker Reasons

- Different Intra Prediction Modes with SKIP
 - By 4 different papers
 - Not satisfactory because DC-only prediction also exhibits flicker (By DQ – similar test by us, with similar results)
- Grid Movement
 - Objects are broken to different blocks due to movement, each block handled differently, thus flicker is caused
 - Not satisfactory non moving parts in videos exhibit flicker
- Spirals half with DC modes only

Flicker – Further Examination

- Different Coding Error Patterns (suggested by DQ article)
 - Generalized, includes several components
 - Inter Temporal prediction & strong quantization of residuals or SKIP
 - Intra Spatial prediction & weak quantization of residuals

MSE Coded vs. Original (per pixel)

Flicker Post-Processing

- Novel treatment for flicker
 - Doesn't necessitate changes in the encoder
 - Complements suggested encoder modifications as no single method eliminates flicker completely
 - No Post Processing method for flicker reduction was found in literature
- Difference of Coding Error Patterns
 - **Reduction** to alleviate flicker
 - Estimation to measure flicker, crucial for adaptive filtering

Flicker Reduction - Main Idea

- Estimate motion vectors between every two consecutive frames
- Reconstruct frame X from X-1 by MV, to get MCP(X)
- X is the Intra frame which is Original + spatial prediction error
- MCP(X) estimates Original + temporal prediction error
 - The better the estimation the better the results
 - No motion vectors for Intra frames
- Average X and MCP(X)

Flicker Reduction – cont'd

- Need to filter only around I frames, to avoid unnecessary blurring
- Jump is steep need to filter across more than one frame, to smooth the jump
- Use weighted average by distance from I frame

Flicker Reduction Post Processing Scheme

Flicker High Pass Filter

- Use weighted average by distance from I frame
- Only filter low frequencies, to avoid flicker in fine details

Adaptive Filtering

- Filtering *k* frames reduces intra frame jump by ~1/*k*
- Need to decide how many frames to filter in each GOP
 - Measure flicker in the intra frame
- Earlier works only provide a referenced measure
- Novel non-reference measure was developed, based on empirical flicker characteristics
 - Constructs a 'flicker map' for an intra frame using its motion-compensated counterpart
 - 'flicker map' is derived from estimated difference of coding error patterns (same as X – MCP(X))

- Flicker is more noticeable in smooth areas
- Identify 'smoothness' by calculating 1/(1+std) of 3x3 block centered on the pixel
- 1/(1+std) < 0.5 means a pixel is in a non-smooth area

Identification of smooth areas

Intra frame

Smooth areas 22

• Large differences between intra frame and motioncompensated counterpart may indicate high flicker

Absolute difference 23

Intra frame

- Smooth areas with large differences relative to motioncompensated image will display most flicker
- Multiply smoothness map by difference map

Abs. diff * smoothness 24

- Isolated changing pixels are not perceived as flicker
- Use morphological opening by reconstruction to detect clusters of pixels
- Where the result is not zero, copy pixel from difference image

Final flicker map 25

- Flicker map indicates presence and strength of flicker
- Flicker is measured for the entire frame
 - Need to determine the worst flicker, not the average
- Pick lowest integer that is greater than 75% of the non-zero pixels in the flicker map
- Indicates the number of frames to filter in the GOP

Adaptive Filtering - Diagram

PSNR vs. Bitrate

Container PSNR-vs-Bitrate Mobile PSNR-vs-bitrate PSNR Unfiltered PSNR Unfiltered -PSNR Filtered PSNR Filtered PSNR 28 **PSNR** 37 [dB] 26 [dB] 36 Bitrate [Kbps] Bitrate [Kbps]

Paris PSNR-vs-Bitrate

Flicker vs. Bitrate

Mobile Flicker-vs-Bitrate

Container Flicker-vs-Bitrate

Summary

- Flicker is prevalent in H.264
 - Wasn't studied extensively in the past
 - Existing solutions require encoder changes
- Innovative post processing technique and nonreference objective measure suggested
 - Complements encoder modifications
 - Shows good results, objectively and subjectively
 - Paper submitted to PCS 2007
 - Patent-pending by Intel-Oplus

Future Directions

- Better frame reconstruction
 - Results affected by motion vector accuracy
- Adaptive filtering in the frame
 - Use flicker map to select areas where flicker is particularly noticeable
 - Might lead to edge artifacts

Thank you!

Coding Artifacts - examples

Color bleeding

Ringing / Mosquito noise

Coding Artifacts – examples

Deblocking Filter

Filter Strength can be altered on the: •

- Slice level •
- Macroblock level
 - Sample level •

Block modes and conditions	
One of the blocks is Intra and the	4
edge is a macroblock edge	
One of the blocks is Intra	3
One of the blocks has coded residuals	
Difference of block motion ≥ 1	
luma sample distance	
Motion compensation from different	
reference frames	
Else	0

Flicker – Suggested Reasons

Grid movement

References

- [1] Sandra Delcorso, Carolina Miro, and Joel Jung MNR: A Novel Approach to Correct MPEG Temporal Distortions
- [2] Atzori, L.; De Natale, F.G.B.; Granelli, F Adaptive anisotropic filtering (AAF) for real-time visualenhancement of MPEG-coded video sequences.
- [3] Francois-Xavier Coudoux, Marc Georges Gazalet, Patrick Corlay **A post-processor for reducing temporal busyness in low-bit-rate video applications**

Blurring

Experienced at low-medium bitrates

- Happens due to low bitrate and due to the de-blocking filter. Annoying blocking artifact is replaced by less annoying blurring
- Some details were simply lost (due to bitrate)
- It is not clear that something can be done about it

Temporal Busyness Post Processor

- Coudoux, Gazalet, Corlay, 2003
- Deals with temporal busyness resulting from ringing and DCT basis images
 - DCT basis images not present in H.264 due to deblocking filter
 - Ringing is not a problem in H.264

MNR – Drawbacks

- Simple motion identification:
 - Doesn't use motion vectors
 - Uses only absolute difference between same blocks in adjacent frames
- Weak filter:
 - Filters only DC coefficients
 - Uses only 2 frames for filtering (preceding and following)
- No perceivable improvement in our videos.

AAF – Drawbacks

- Doesn't do temporal filtering
 - Assumes that mosquito noise comes only from ringing
 - Doesn't mention other temporal artifacts besides "mosquito noise"
 - There are other temporal artifacts

H.264 Encoders

- A variety of H.264 encoders in the market
- x264 is the leading encoder according to benchmarks (MSU)
 - Chosen encoder for project
- The JVT reference encoder is considerably inferior
 - Also exhibits motion jerkiness (at low bitrates)

Artificial Example: Spirals

- Based on Fenimore, Libert, Roitman, 2000
 - Propose a metric for MPEG₂ MN measurement
 - Propose a test pattern for subjective MN measurement: still spirals video
- We used a similar pattern (800x530x64Kbps)
 - Still video exhibits slight PI Jumps
 - Much worse jumps with movement
 - <Moving video example>

From Artificial to Real World Video

- Need to filter only around I frames, to avoid unnecessary blurring
- PI Jump is steep need to filter across more than one frame
- Use weighted average by distance from I frame

From Artificial to Real World Video – cont.

- I frame doesn't have motion vectors
 - So we don't use them...
 - We generated our own MVs from the original video, and used them in the reconstruction
 - In real applications, can use H.264 MVs, and generate I frame MVs by motion estimation with MSE

From Artificial to Real World Video – cont.

- Motion estimation is not perfect
- Filtering high frequencies (=textures and edges) will cause an edge jump when we stop filtering
- Solution: filter only low frequencies

Approach Summary

- Generate MVs for entire original video
- fout(Intra-1)=f(Intra-1) % don't process pre-I frames
- For each frame j in frames: Intra to Intra+k-1
 - fc(j) = compensate_motion{fout(j-1)}
 - fout(j) = low_freq { $j/k^{*}f(j) + (k-j)/k^{*}fc(j)$ }+high_freq{f(j)}

Video Examples

- Mobile, unfiltered
- Mobile, filter low frequencies
- Shields, unfiltered
- Shields, filter all frequencies
- Shields, filter low frequencies
- Ballroom, unfiltered
- Ballroom, filter low frequencies

Future Directions

- I frame motion vectors:
 - Generate by exhaustive search
 - Interpolate I-1 and I+1 MVs
- Objective quality metric
- Optimal thresholds

MNR – Mosquito noise reducer

- Delcorso, Jung, 2002
- Defines Mosquito Noise as temporal fluctuation near edges of moving objects
 - Identifies moving blocks (LPF on frame difference)
 - DC median filter (temporal & spatial) on still blocks
- Drawbacks
 - Simple motion estimation
 - Weak filter
 - No perceivable improvement in our videos

AAF – Adaptive Anisotropic Filter

- Atzori, De Natale, Granelli, 2002
- Defines Mosquito Noise as ringing near edges of objects
 - Identifies the types of blocks
 - Applies a set of spatial filters on different types of blocks
- Drawbacks
 - No temporal filtering
 - Not all temporal artifacts are due to ringing

Objective Measurement Results

- Modified version of Fan's flicker measure
 - Apply measure only to k frames following I-frame (k=2, 4, 6)
 - For our filter, low k values expected to give better results

	Distortion Reduction		
Video	2 frames	4 frames	6 frames
mobile175i15	58.67%	46.16%	38.83%
ballroom300i15	38.25%	25.05%	-
shields512i15	22.50%	17.86%	-

Adaptive Filtering - Summary

- Locate smooth areas in image
- Calculate absolute difference between intra frame and motion-compensated counterpart
- Multiply images and do opening by reconstruction
- Where the result is not zero, retain values from absolute difference image
- Determine strength of flicker in the resulting image
- Draw Instead!!!

Modified Flicker Measure

- Fan's flicker measure designed for all-intra videos
 - Averages flicker for entire video
 - Flicker is only noticeable around intra frames
 - When using periodically-inserted intra frames, averaging over the entire video will mask the jump
- For filtered videos, flicker was averaged only for first 6 frames of each GOP

No Filter vs. Filter

Temporal Post Processing Methods

- Mosquito Noise Reducer: 2002, [1]
 - Identifies moving blocks (LPF on frame difference)
 - DC median filter (temporal & spatial) on still blocks
 - No perceivable results on H.264 videos
- Adaptive Anisotropic Filter: 2002, [2]
 - Identifies the types of blocks
 - Applies a set of spatial filters on different block types
 - Deals with ringing-related noise, not relevant to H.264
- Others (e.g. [3]) Similar drawbacks

Intermediate Conclusions

- Most literature deals with MPEG2 temporal discontinuities
- Temporal discontinuities characterization not relevant to H.264
 - Practically no ringing in H.264
 - "Temporal discontinuities" is too wide a term

PSNR & Flicker vs. Bitrate

paris PSNR & Flicker vs. Bitrate

