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ABSTRACT

The overdetermined nature of hyperspectral data consitutes a seri-
ous obstacle in many applicative fields. A vital step in dimension-
ality reduction is determining the intrinsic number of dimensions
the signal resides in.

This work proposes a Modified Gram-Schmidt (MGS) pro-
cess which iteratively finds the most distant pixels within the data
in terms of an orthogonal complement norm (OCN) to a subspace
spanned by the extreme pixels found in previous iterations. We ana-
lyze the distribution of extreme OCN using Exreme Values Theory
(EVT) and derive a termination condition for the MGS process.
The dimensionality is determined by the number of found extreme
pixels, which provide an estimation for the signal subspace.
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1. INTRODUCTION

A variety of approaches have been proposed in [1],[2],[3] for au-
tomatic determination of the pure materials spectra (endmembers)
in the hyperspecral scene. Each pixel in the hyperspectral image
can be represented as a linear combination of the spectra of pure
materials. Apparently, in an ideal case, all hyperspectral pixels
reside in a linear subspace spanned by the pure materials spectra.
Determining the dimensions of this subspace is an important task
for subsequent processing.

Since different endmembers are reasonably assumed to be lin-
early independent, we may employ a Gram-Schmidt process to
find each endmember orthogonal contribution to the signal sub-
space. By choosing pixels that contribute maximally (have the
maximal OCN) to the subspace, we likely obtain the purest pixels
in the scene.

Common tools for estimating the intrinsic number of dimen-
sions are principal component analysis (PCA) and its noise ad-
justed version, the minimum noise fraction (MNF) algorithms.
These algorithms employ second order statistics that evaluate the
spatial signal distribution in terms of energy. As a result, rare ma-
terials spectra in the scene that appear in few pixels only and don’t
contribute sufficiently to the energy, are disregarded. In many ap-
plications this is not affordable. An advantage of the proposed
algorithm is that it does not ignore such “rare” pixels and, never-
theless, estimates the rank of the signal subspace.

2. THE LINEAR MIXTURE MODEL

Given that the number of spectral bands is b and x; € IR? are the
observed pixels, the linear mixture model is defined as following

X =8 +ny (1
where s; = A, is the signal part of the observations, which
is a nonnegative linear combination of r linearly independent end-
members A = [ajay...a,] and 3, is corresponding vector of
their proportions in an observation pixel x;. The n; are assumed
to be spatially and spectrally white, zero-mean Gaussian noise,
with E{nn'} = ¢*1°.
The index ¢« = 1,...,T denotes the spatial position of a pixel
under cosideration out of total 7" data pixels. It will be omitted in
the sequel when mentioning all data pixels.

3. MODIFIED GRAM-SCHMIDT

Our objective is to estimate A or, more precisely, the range of A
by finding the purest pixels and the rank of A. The proposed way
to do that is to use iterative MGS.

The iterations begin with A1 = a1 = X, where ||x,|| =
max;=1..7 ||Xs||.- Ateach step k, every x is decomposed as

x=x"+x° 2)

where x” € R(Aj_;) and x° € N(Az_1). The R and A de-
note the range and null spaces of Ay respectively. Thus x€ is
an orthogonal complement of x onto a subspace spanned by the
columns of Ak_l. The iteration from k& — 1 to k is performed as
following

m = argmax||xj]| ©)
ék = Xm
Ak = [Ak_1|ék:| .

At each step, s and n can be uniquely decomposed as
s = sP+5s° 4)
n = n’+n° 5)

where s?, n” € R(Aj_;) and s°,n° € N(A,_1). Due to
uniqueness of a direct sum IR® = R @ A, the following holds:

x¢ =s°+n°". (6)



Obviously, we would like to terminate the process, when the
next a5 does not provide a reliable contribution to the signal sub-
space, in other words, &y, is mainly managed by the noise. In the
next sections we analyze the behavior of noise component in &y,
and derive the termination condition.

4. THE NORM DISTRIBUTION

Let C; be a matrix, whose rows constitue an orthogonal basis to
N (Ak) with

rankC; =1l=b—k @)
Then

[In°||* =[|C: n°[|* = ||Cin]|? ®

Lets denote A = C;n to be a random vector with [ components.
E{AX} = E{Cnn'C}} = ¢°T )

It is a white Gaussian noise vector with [ components. More-
over,
max]||A;[| = max||ng | (10)

Consider a random variable || A[|?. It has a Chi-squared distri-
bution of order I denoted by x> (I, o*) with the following pdf:

1 u\NU/D=1
1) = S /30e (z) e (b

For sufficiently large I as we have at hand (I >> 1), x*(1, 0?)
can be approximated by N(lo?,2lc*) as the limiting distribution
of a sum of [ i.i.d squared components of X. Thus, for qualitative
evaluations, we can use

Al ~ N(io?,2lc"). (12)

If the noise n is not spectrally white, then E{AX'} will not
nesserarily be given by (9). Suppose, that the noise covariance-
matrix eigenvalues are decreasingly ordered as (A > A2 > ... >
A7). Then || A[||? can be written as a sum of [ independent x* (1, A7)
variables with means and variances equal to )\? and 2)\;1, respec-
tively, for j = 1...1. Therefore, the approximation given in (12)
can be rewritten as follows:

AP ~ N(mo?,2l,00), ol =\2
1 2 l 4
22 2\
lm = VL lv=2)\—i (13)
j=1"1 j=1 "1

5. EVT AND THE MAXIMUM NORM

The modified Gram-Schmidt uses maximum norm of the residuals
{]1x¢[|}£, in order to obtain the next column of A. Let’s consider
the distribution of My = vn’iaxTH)\in.

1=1...

5.1. Gaussian approximation analysis

Theorem 1. [f {£,} is an i.id. (standard) normal sequence of
random variables, then the asymptotic distribution of

M, = max{& ...&}

satisfies
P(an(Myp —bn) <) e exp(—e™ ") (14)
where
an = (2logn)'/?
b, = (2logn)/? -

%(2 log n) ~*/*(log log n + log 4).

The proof is found in [4].

In general, the distribution G(z) = exp(—e~%), also known
as the Gumbel distribution, is a limiting distribution of a maximum
of n random variables with exponential distribution tails. Its mean
and std in the given standard form are y = 0.5772 and v = 1.6450
respectively. Although, Theorem 1 provides us with normalizing
coefficients a, b, for the Gaussian variables, the coefficients for
x2(1,0?) variables (as ||\;||*> are) don’t have a known analyti-
cal form. We proceed with our quantitative analysis adopting the
Gaussian approximation (13) in order to obtain

2
P(Mr <2)~G <aT [M - bTD (15)
o2+/2l,

with mean and std as following

ol <—V21”n +brV20, + lm) 16)

pT = ar
2
2. /21,

or = Ze¥Zv, (17)
ar

While this approximation doesn’t provide us with accurate mean
and std of M, it is instructive to look at the ratio

ur 1/2 Im

— 2log(T log(T — 18

pe og(T) + log(T) N (18)
1< mcvi (19)

Vi

As can be seen, the ratio doesn’t depend on &2, it is log-dependent
on T, and in terms of [,,,, [,,, it accepts the maximum when ()\% =
A3 =...=A}) (i.e. the noise is white and ,, /v/I, = V/I). Thus
the ratio p7 /o7 tends to infinity as T — oo or I — oco. For
typical parameters [ = 100, T = 10%, and white noise, pur Jor =
30. The dominant factor in obtaining such a high ratio is the high
dimenionality .

To conclude the above derivations, we say that for sufficiently
large T' and when the noise is approximately white, My can be
substituted by pr almost surely, i.e. with relatively small devia-
tion.

5.2. The Chi-squared normalization

As we have seen above, the extreme value theory proposes pur as
a reliable estimation of the most probable extreme value of a norm
of a multivariate noise. It was shown in (18), that the reliability
in terms of the ratio ur /o attains its maximum when the noise
is white. Theorem 1, however, doesn’t provide a way for exact
calculation of y; and o7 for x%(1, o) variables. The next theorem
proposes a recipe to do it for almost any distribution of interest.



Theorem 2. If {&,} is an i.i.d. with absolutely continuous distri-
bution F(x) and density f(x), then letting

(i) h@) = £()/(1~ F@))
(ii) by =F (1 — =)

(iii) an = h(bn)
(vi) w = limy_+h'(x), where " is the upper end-point of F,

then for M,, = max{¢&; ...&,}

n

P(an(My, —b,) < x) e (20)

exp(—e™ %), if w=o00
exp{—[1+ 2]“},if w < o0

The proof is found in [5].
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Fig. 1: Gumbel limit of the ||\||> extreme value versus its
distribution approximation. The Gaussian approximation (dot-
dashed line) provides only a qualitative evaluation of the ratio
pur/or, whereas the exact Chi-squares (dashed line) precisely
matches the Monte-Carlo simulated (solid line) density.

The determination of M distribution is summarized in Fig. 1.
We have performed a Monte-Carlo simulation using white Gaus-
sian (normal) multivariate noise. The solid line corresponds to the
density of the simulated maximium of 7" noise realizations. The
dot-dashed line corresponds to Gumbel density limit using Gaus-
sian normalization. The dashed line, which is obtained using Chi-
squared normalization fits well the simulated one.

6. RANK DETERMINATION

Now we can define the termination condition for the Modified
Gram-Schmidt process. Our concern is to ensure that at each itera-
tion, the signal part in @y, ||sf, || dominates over the most probable
value for maximum noise realization

My = max |[n°|| & Var,

where a.s denotes almost surely.

Heuristically, we want to ensure, that aj contributes a “new”
dimension almost surely due to the signal. We realize that with the
following termination condition

15| < a/pr. 1)

where 1 < a < 2. Using triangle inequality, we obtain

sl < lIx5ll + [0l < (e+1)Var
SNR = sl L+ (22)
Mr

A natural choice is seemingly o = 1, which entails SNR < 2.

This, however, isn’t the tightest bound to the SNR from above,
and the choice @ = 1 seems to be not practically feasible. If
the noise and the signal are statistically independent, then C, =
C; + C,,. Thus, using (13) and (16), we obtain

Mo R s + fin, (23)
where
pe = E{max|]x°|*} (24)
ps = E{max||s°[]} (25)
pn = E{max||n°||*}. (26)
Therefore
mauc||xc||2 = ma@c||s‘.c||2+max||nc||2 27

This result is a very coarse approximation, since the signal is not
Gaussian and its dimensionality is much lower than [. Neverthe-
less, as soon as at each iteration we find a noisy estimation of the
signal range in terms of span of columns of Ay, the signal residual
s¢ cannot be eliminated. Therefore, we anticipate a low probabil-
ity of finding x{, that satisfies (21) with & = 1. By choosing «
slightly above 1 and terminating the process when (21) is satisfied,
we obtain

a.s
SNR < a-—1 (28)
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Fig. 2: Dimensionality determination. (a) the maximum squared
norm of orthogonal residual thresholded by the noise-based thresh-
old reveals dimensionality of 5, (b) the PCA eigenvalues.

7. RESULTS

We present results of the Modified Gram-Schmidt process appli-
cation onto a hyperspectral image of a geological scene with 95
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Fig. 3: Least squares unmixing results. (a) is a typical 10-th
band, (b),(c) and (d) are the abundance maps for 5,6 and 7 end-
members.

spectral bands. The noise was assumed to be spectrally white, its
variance was estimated band-wise by

MAD(HH)

0.6745 ' @)

b=
where the MAD signifies the median absolute deviation operator
and H H is the finest scale wavelet (symmlet8) decomposition of
the corresponding band image (see [6]). Thus the noise whiten-
ing reduces to band-wise scaling in order to obtain an equal noise
variance in each spectral band.

A typical 10-th band image is shown in Fig. 3 (a). The abun-
dance maps for 5,6 and 7 endmembers are shown in (b), (c) and
(d) respectively. The thresholdng, shown in Fig. 2 (a), reveals di-
mensionality of 5 (for a = 1.1). This is visually supported by Fig.
3 (b),(c) and (d). A noisy splitting of the second endmember abun-

dance map in (c) corresponds to unmixing of 6 endmembers. Un-
mixing of 7 endmembers produces a competely noisy abundances
of the seventh endmember (d). These observations testify that 6th
and 7th endmembers have a very low SNR in their OCN onto the
subspace spanned by the first 5 endmembers.

8. CONCLUSIONS

The presented analysis provides us with the termination condition
for the Modified Gram-Schmidt algorithm. As a result we ob-
tain an estimation of the signal subspace dimensionality up to the
noise-related limitations. In contrast to PCA, this technique pro-
poses a well-defined signal-noise separating threshold, which al-
lows more reliable dimensionality estimation even with presence
of rare endmembers in the data.
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