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Figure 1: Spatial control over image generation with inference-time adaptive normalization. We suggest a new spatial-
aware normalization technique applied on pre-trained GANs at test-time that enables spatial control over the generation
process. This allows to use pre-trained GAN models like [12, 2] for a variety of applications that modify only specific image
regions, such as (a) randomly generating sub-regions within an image (while keeping the rest of it fixed), (b) controlling the
saliency of different objects, (c) transferring local attributes from one image to another and (d) modify a specific part of the
image to belong to a different class.

Abstract

We introduce a new approach for spatial control over
the generation process of Generative Adversarial Networks
(GANs). Our approach includes modifying the normaliza-
tion scheme of a pre-trained GAN at test time, so as to act
differently at different image regions, according to guidance
from the user. This enables to achieve different generation
effects at different locations across the image. In contrast
to previous works that require either fine-tuning the model’s
parameters or training an additional network, our approach
uses the pre-trained GAN as is, without any further modi-
fications or training phase. Our method is thus completely
generic and can be easily incorporated into common GAN
models. We show our technique to be useful for solving a line

of image manipulation tasks, allowing different generation
effects across the image, while preserving the GAN’s high
visual quality.

1. Introduction
Since first introduced by Goodfellow et al. [8], uncondi-

tional GANs have led to a revolution in the computer vision
community, with a rapid improvement over the visual quality
of the generated scenes, as well as the ability to generate
images with growing resolution [11, 2, 12, 19, 13]. Conse-
quently, pre-trained unconditional GAN models have been
incorporated as a building block in many image editing and
manipulation tasks, enabling high flexibility while ensuring
high quality performances [7, 10, 21, 9]. Most of such meth-
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ods use the pre-trained GAN as a black box and perform the
desired manipulation in the generator latent space instead of
in the image space itself. However, current State-of-The-Art
(SOTA) GANs models map a latent vector that has no notion
of spatial coordinates, into a two dimensional image. There-
fore, any manipulation of the latent code affects the whole
image, causing a global manipulation effect. This negates
the ability to control the generation process at different spa-
tial locations, and impedes the use of GANs for tasks that
require different operations at different locations across the
image.

In this work, we suggest a new method for adapting a
pre-trained GANs at test time to allow spatial control over
the generation process. Our method includes modifying
the model’s original normalization scheme (that was used
while training) act differently on different image regions,
according to guidance from the user. As we show, although
the GAN model was trained with a global fix normalization,
using our spatial adaptation at inference time allows to utilize
the power of pre-trained GANs models, while controlling
the generation process locally. This is done without any
further modifications to the model or additional training,
which is often a challenging task by itself when dealing with
adversarial training.

We show that our method is very easy to apply and can be
integrated into popular GANs models like BigGAN [2] and
StyleGAN [12, 13]. In addition, as no training is required,
we enjoy very short execution time compared to other meth-
ods that require a targeted training phase. We exemplify
the contribution of our method for the tasks of local genera-
tion, local attribute transfer, class hybridization and saliency
manipulation. As we show, for all these applications, our
method allows to modify only a specific image region while
keeping the rest of it intact. This is while maintaining high
visual quality as we show in Fig. 1.

2. Related work

Image manipulation with pre-trained GANs. In recent
years, pre-trained GAN models have been incorporated into
image manipulation schemes for various applications. This
is usually done by manipulating the latent code to achieve
the desired effect. For example [20] finds meaningful direc-
tions in a progressively growing GAN (PGG) model trained
on faces, in order to semantically edit facial attributes. An-
other example is [7] that suggests to optimize direction in
the latent space of BigGAN [2] in order to change cognitive
properties of the images such as memorability, aesthetics,
and emotional valence. A recent line of works [10, 21, 9]
extend this to reveal steering directions corresponding to se-
mantically meaningful image transformations in BigGAN’s
latent space. StyleGAN [12] is used in [4] to perturb a latent
code of an image to obtain modified image views. However,

since all these generators map the latent code that has no no-
tion of spatial dimensionality into the full image, any change
in the latent representation affects the whole image, causing
a global effect. Our approach offers spatial control over
the manipulation effect by incorporating inference time spa-
tial adaptive normalization, and allows to manipulate only a
specific image region.

Spatial adaptive normalization. The idea to use location-
dependent normalization mechanism for image generation
was first introduced in SPADE [18] for the task of semantic
image translation. This concept have been extended in vari-
ous of followup works [26, 23, 22, 14] and have been quickly
adopted for other tasks [24, 15, 25]. All these normalization
techniques include learned parameters and therefore need to
be incorporated during training. On the other hand, our ap-
proach is applied only at inference time and does not require
any training phase.

Local control over GANs. Lately, several methods that
control spatial aspects of generative process have been pro-
posed [3, 27], capable of high quality results. However, in
contrast to our work, these models require training an addi-
tional network that encodes spatial characteristics, whereas
our framework uses only the pre-trained GAN without the
need to train any additional component. The most closely
related method to ours in this aspect is [1] which presents im-
pressive results for the task of locally editing images accord-
ing to text description. For BigGAN, this method achieves
spatial control by masking feature maps, whereas we focus
on adapting the normalization unit.

3. Inference-time Adaptive Normalization

In most SoTA GANs architecture ([2, 12, 13]), the la-
tent code is embedded into the generation process through
the normalization units. This is one by applying a z-
dependent denormalization operation right after the nor-
malization mechanism (e.g. Batch-Norm in BigGAN [2],
AdaIN in StyleGAN [12]) at each of the generator layers.
That is, at the n-th layer of the model, the denormalization
gain and bias parameters γn, βn ∈ R1×1×Cn are calculated
from the latent code z ∈ R1×1×Cz by a linear layer Ln,
i.e γn, βn = Ln(z). These parameters are then duplicated
along the spatial dimensions to create two corresponding
maps γ̂n, β̂n ∈ RHn×Wn×Cn with the same dimensions of
the n-th layer normalized feature map fn ∈ RHn×Wn×Cn .
These denormalization maps are then applied to fn such that

γ̂n � fn ⊕ β̂n, (1)

where �,⊕ represent element-wise product and sum respec-
tively, as also described in Fig. 2a. Therefore, note that this
mechanism imposes that any change in the latent code z will
be directly applied to the full image space causing a global
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Figure 2: Inference-time adaptive normalization. In con-
trast to the standard GAN’s normalization scheme that ap-
plies the same global fix normalization at all spatial loca-
tions (a), we allow the normalization operation to vary spa-
tially according to a guidance map (b). Therefore, instead of
letting only a single latent code to govern the whole image,
we are able to blend several different latent codes to control
the generation process at different image regions. We per-
form this adaptation at test-time, and thus can use pre-trained
GAN models with no additional training. In this illustration
we generate an image from two different latent codes z1, z2
according to a binary map m.

effect, without any ability to control the manipulation effect
across different spatial locations.

Our goal is to enable spatial control over the generation
process. Namely, given a latent representation z, we would
like different image locations h,w to be modified by differ-
ent operations φh,w. We achieve this by modifying the nor-
malization mechanism at test time. Instead of using a simple
duplication operation across the spatial dimension to create

the gain and bias maps, as done in training, we suggest con-
structing locally-varying denormalization maps that allow
different transformations at different image locations. That
is, the latent code z is manipulated by different operation at
different locations φh,w, creating a set of spatially-varying
latent codes {zh,w}, each correspond to different gain and
bias parameters γ̂h,w, β̂h,w = L(zh,w) that construct the full
denormalization maps γ̂, β̂. The denormalization is then
performed according to eq. 1.

Let us explore the relatively simple case of two different
manipulations of the latent code z1 = φ1(z), z2 = φ2(z),
such that each is applied at different region of the image
according to a binary mask m . In this case we will have a
set of two corresponding denormalization parameters

γ1, β1 = L(z1), (2)
γ2, β2 = L(z2).

The final gain and bias maps are then constructed by

γ̂ = m� γ1 + (1−m)� γ2, (3)

β̂ = m� β1 + (1−m)� β2,

where � denotes element-wise product, as also illustrated in
Fig. 2b. This technique therefore enables to control the gen-
eration process at different image regions, and thus allows
local edit and image manipulations. Our method is similar
to the normalization mechanism of SPADE [18] presented
in the context of semantic image translation, in the sense
that both let the denormalization operation to vary spatially.
However note that [18] train their generator with the adapted
normalization whereas we suggest to adapt the normaliza-
tion of a pre-trained generator only at inference time. Thus
we avoid any additional training which can be very unstable
with GANs.

4. Applications
We next demonstrate the use of our Inference-Time Adap-

tive Normalization (ITAN) technique for four different appli-
cations. All are done using pre-trained fixed GAN models,
and therefore our run time is equal to the inference time of
the model. Please see additional results in the supplementary
materials (SM).

4.1. Local generation

We first demonstrate the use of ITAN for randomly draw-
ing only a specific part of the image. For this task we use
StyleGAN2 [13] pre-trained on the FFHQ dataset [12]. We
start by generating a random image according to a random
latent vector zinit. In the next step we select an area to be
re-sampled according to a new random latent code zre-samp,
and construct a corresponding spatial binary mask m that
indicates which latent vector controls the generation at what
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Figure 3: Local generation. Our approach enables to randomly resample only specific regions of an image. In these examples
we first generate three different images (leftmost column) using StyleGAN [13] and then randomly re-generate only a specific
part of the face indicated by the mask (left column, upper left corner) using our inference-time adaptive normalization. By
doing so we are able to create new image content inside the mask (e.g. (a) new eyes appearance, (b) nose shapes, (c) lips and
chin composition), while keeping the rest of the image intact.

region. We then use our scheme described in sec. 3 and
follow eq. (3), (4) with z1 = zinit, z2 = zre-samp,m, to con-
struct an image that corresponds to zinit outside the mask
and zre-samp inside the mask. Figure 3 shows several results
of our local re-generation scheme, each row corresponds to
a different initial sample zinit and each column represents
a new re-sampled image with zre-samp. As can be seen, our
approach enables to re-generate only a specific region of
the face, while keeping the rest of it identical to the initial
sample. Note how although we use a relatively coarse mask,
the blending effect is completely smooth. As StyleGAN is
constructed with a multi-scale architecture, we are able to
choose which scales to modify using ITAN normalization.
In these experiments we adapt scales 1-3. The effect of
choosing different sets of scales is exemplified in the SM.

4.2. Semantic attribute transfer

Here we spatially compose an image from two different
sources. We exemplify this with StyleGAN2 [13]. Given
two images G(zsource), G(ztarget) and a binary mask m that
indicates how to perform the composition spatially, we gen-

erate an image that corresponds to the attributes encoded
in z1 = zsource outside the mask, and z2 = ztarget inside the
mask. Again we achieve this by following eq. (3), (4). This
can be seen as a version of 4.1, but instead of randomly draw-
ing zre-samp, we choose a specific latent vector ztarget which
generates an image G(ztarget) with a specific local attribute
we wish to transfer toG(zsource). The results are presented in
Fig. 4. As can be seen, in contrast to the global style mixing
suggested in [12], we are able to transfer only local attributes
like lips, eyes and nose appearance. Here as well we modify
scales 1-3 of the models with ITAN.

4.3. Class hybridization

Next, we exemplify the use of our method for the task
of class hybridization, our goal is to generate images that
spatially combine two different classes according to a guid-
ance mask. For this task we use BigGAN [2] which is a
class conditioned model that was trained on the ImageNet
dataset [6] containing 1K classes. Obviously, conditioning
the generation on the image class enables to generate images
from only one specific class at a time. We use our ITAN
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(a) source (b) target (c) global style mixing [12] (d) local mixing (ours)

Figure 4: Semantic attribute transfer. The multi-scale architecture of StyleGAN [12] enables to perform global style mixing
by taking one latent code to globally control a subset of scales, and another latent code to globally control the rest of the scales.
Here we use the latent code of the target image (b) for the coarser scales, and that of the source image (a) for finer scales.
This result in a mixed image (c) containing the global structure of the target image (e.g. face and hair shape) and finer image
features from the source image (e.g. skin tone). Our test-time adaptive normalization enables spatial control over this effect;
we perform the mixing locally (d) according to a given spatial mask ((d) right lower corner). The effect is that only local
attributes are transferred from the target image to the source image, while keeping the area outside the mask fixed. Note how
we manage to transfer relatively coarse structures (e.g. lips, eyes and nose shape) while maintaining realistic appearance.

technique to challenge this.

In BigGAN, the class representation is embedded into the
generation process as part of the latent code. That is, the
latent code is a concatenation of a random noise z and the
class representation c such that the input to the model blocks
is [z, c]. Therefore we are able to use our ITAN mechanism
in order to synthesize images that combine two different
classes spatially. We start by drawing a random vector z that
will be shared across all spatial locations, then we choose
the classes to be combined c1, c2 according to a binary mask
m that represents the spatial location of each. The ITAN

gain and bias maps are then calculated according to eq. 3, 4
where z1 = [z, c1] and z2 = [z, c2]. As mentioned before,
we apply the spatial normalization only at test time on the
pre-trained BigGAN model, and therefore, there is no need
for additional training or fine tuning.

Figure 5 shows several examples of our class hybridiza-
tion results. As can be seen, by changing only the image
class but keeping z fixed, G(z1) and G(z2) share the same
general layout. By spatially combining the classes using
ITAN, the final result is an image that combines both of the
classes, and maintains a realistic appearance (though describ-
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(a) G([z, c1]) (b) G([z, c2]) (c) ITAN hybridization

Figure 5: Class hybridization. Class conditioned GANs such as BigGAN [2] are trained to generate images that explicitly
belong to a specific class ((a),(b)). We use our inference-time adaptive normalization technique to break this, and create images
of hybrid classes, blended spatially according to a mask ((c), bottom-right corner). The result is an image that contains an
hybridized object of both of the classes (c).

ing an unrealistic object combination). Note that the first
BigGAN block has no notion of spatial dimension, therefore
for this block only we choose only c1 which greatly affects
the general appearance of the results.

4.4. Saliency manipulation

We next use ITAN not only for combining different la-
tent codes spatially, but also for finding an optimal spatial
manipulation of them according to a desired image effect.
We choose to exemplify this for the task of saliency manip-
ulation. That is, we would like to edit an image such that
a specific region will be more/less salient. Previous works
suggest to perform such manipulation directly in the image
space by editing pixels/patches [16, 17]. Using ITAN we
harness the power of GANs for this task, enabling to change

the saliency of an image by generating a completely new
image content. For example, in Fig 6 row (a), in order to
make the upper-left corner of the image more salient, our
approach manipulates the latent vectors such that the GAN
generates a house in the background.

To perform this we use the GANalyze baseline [7], which
aims to find meaningful directions in BigGAN’s latent space
according to a network that assesses cognitive properties
of images (e.g. memorability, aesthetics, emotional va-
lence). That is, the optimization process includes find-
ing an optimal transformation of the latent code φ(z) so
that all latent vectors going towards this transformation
will get a target score from the assessor Atarget. Namely
argmin

φ
(A(G(φ(z)))−Atarget(G(z))). See [7] for details.
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Figure 6: Saliency manipulation. We use our inference-time adaptive normalization to extend GANalyze [7] to control
spatial effects. This enables to solve tasks that require treating different image regions differently, like saliency manipulations.
Instead of searching for a global optimal latent code transformation, as done in [7], we find a pair of optimal codes each
corresponding to a different image region (e.g. foreground and background in line (c), left corner and the rest of the image in
line (a)). As can be seen, our technique enables to change the saliency of the image such that the indicated area is less/more
salient, while keeping the global semantics of the image with minimal changes, compared to the baselines where drastic
changes alter the image semantics. For validation, we check the saliency map of the result. Our images are the only to achieve
the desired effect.
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Input Mask Output

Figure 7: Saliency manipulation results. With ITAN we
optimize the latent codes corresponding to two image areas
indicated by the mask, such that the indicated object will be
more salient. The latent code transformation causes different
image effects such as color changes, relighting, focus adap-
tation, etc. both of the object and the background to achieve
the desired effects.

In order to use the GANalyze framework for saliency
manipulation we first make two important adaptations to
the optimization process: (i) GANalyze works on a dataset
of images to find a transformation φ that will be optimal
for general images. As saliency maps are unique for each
specific image, we aim to find a transformation that will be
optimal only for the specific image we wish to manipulate.

Therefore we reduce the optimization process to work on a
single latent code. (ii) GANalyze assessors output a scalar
score. We use the saliency detection network of [5] as an
assessor, which takes an image and outputs a saliency map
that has spatial dimensions. Therefore we modify the loss
function to take the `2 norm between the measured and target
saliency maps (instead of a simple difference). Namely
argmin

φ
‖(A(G(φ(z)))−Atarget(G(z)))‖2.

Next, we incorporate the ITAN normalization to the Big-
GAN model (as described in sec. 3) to allow spatial manipu-
lation at test time. Our optimization scheme includes finding
two optimal transformation z1 = φ1(z) and z2 = φ2(z)
such that the combination of two according to a spatial map
with the ITAN normalization scheme will give an image with
the desired target saliency map. As in GANalyze, we take φ
to be a simple parametric affine transformation of the latent
code. Note that in contrast to previous applications, here
both the regions inside and outside the mask can change.

We compare our result with the GANalyze baseline [7]
using [5] as an assessor, and with a variant of GANalyze
that finds the optimal transformation only for a single im-
age. Both of these find a global transformation φ that affects
the whole image, whereas our approach allows the trans-
formation to be different at different image regions. The
results are shown in Fig. 6. As can be seen, both of the base-
lines cause relatively drastic effects that completely alter the
image, whereas our approach results in more delicate ma-
nipulations that preserve the general semantics of the image.
Investigating the saliency map of the manipulated images
(generated with [5]) shows that our approach is the only one
to achieve the desired effect; in the first example (row (a))
the latent code manipulation generates a house in the top left
corner of the image, which is indeed detected to be more
salient (row (b)). In the second example (row (c)) the image
background becomes more vivid, and the saliency map (row
(d)) indicates that relative to the background, the mushroom
is now less salient. Additional examples for our saliency
manipulation results appear in Fig. 7. As can be seen, the
latent code manipulation with ITAN makes the indicated
object more salient by causing different effects in the image
space such as relighting, recoloring, modifying the object
size and location, and focus changes.

5. Conclusions
We introduce a new normalization technique that is ap-

plied at test time to SoTA GANs and enables local control
over the generation process. The new approach is useful
for a line of tasks. Our examples include manipulation of
two image regions, however these can be easily extended
to the general case of N regions. In addition, in order to
manipulate real images (and not only generated ones) one
can first use back-project to the GAN’s latent space.
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