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Abstract—High precision indoor position estimation enables
new opportunities for a variety of commercial, industrial and
consumer applications. In this paper, we consider a phase-
based method to calculate range from noisy measurements of a
Frequency Comb in a multi-fading environment. It can be used
to determine the range between devices for the next-generation
High Accuracy Distance Measurement (HADM) protocol. We
have conducted a quantitative analysis of various estimation
approaches, considering both Monte-Carlo simulations of syn-
thetic data in a variety of ranges. Moreover, we have proposed
evaluation schemes for situations in which only a subset of data
is available and some information may be missing, which extends
existing approaches.

Index Terms—BLE, Frequency Comb, HADM, WiFi

I. INTRODUCTION

The Global Navigation Satellite System (GNSS) is ex-
tremely effective in providing localization data [1] in open
outdoor environments. Unfortunately, because of the weak
signal, GNSS has an inadmissible performance indoors. Today,
indoor positioning plays a major role in a number of fields [2],
and measuring the distance accurately between two devices is
essential for many applications. For example, it can be used
to provide facility visitors with a map that shows points of
interest location on their phones’ screens [1]. Smart buildings
can be empowered by this technology, navigation is improved,
and finding items is no longer a time consuming process.
Location based services, for instance, can also be enhanced
by using accurate distances. It allows business owners to serve
location-based advertising and content. Moreover, location
services can be interleaved with other technologies, such as
Internet of Things (IoT) and analytics, to trigger specific
actions based on a user’s location [3]. Due to the complexity
of indoor spaces and topologies, it is still challenging to
apply accurate, effective, and real-time positioning to indoor
environments.

We address the problem of phase-based distance estimation
from noisy measurements in a multi-fading environment for
the next generation Bluetooth Low Energy (BLE) High Ac-
curacy Distance Measurement (HADM) protocol. HADM is
a new feature in the Bluetooth (BT) standard. It uses a CW
comb to measure gain and phase in BT channels separated
by 1MHz through the Quick Tone Exchange (QTE) method.
The transponder locks on the phase of the signal sent by the
transmitter and actively reflects it back to the transmitter, thus
mimicking the working principle of the radar, as illustrated in
Figure 1.

Several distance measurement techniques have been con-
sidered for the BLE protocol. The most basic solutions for
this problem have been based on Received Signal Strength
Indicator (RSSI) [4], where the distance is calculated based
on attenuation of the transmitted signal. Applying the free-
space signal propagation formula, the receiver measures the
distance from the square root of the ratio of the transmitted
and the received signals. However this method, although
simple to implement, suffers from severe inaccuracy in multi-
fading environments since the inverse square law law does
not longer holds. A different, time-based approach, where the
receiver calculates the distance based on propagation delay, has
been implemented in a variety of communication protocols.
This approach, albeit being considered very accurate and
reliable, is not applicable to BLE due to its broad bandwidth
requirements. Recently, there has been proposed a phase-
based distance measurement technique, which will be the
focus of our work. In that approach, the distance between
the transmitter and the receiver is estimated from the phase
difference between the received and transmitted signals across
multiple frequency bands.

Linear phase difference across uniform sampled measure-
ments corresponds to a fundamental frequency. Estimation
of a frequency from noisy samples of a tone has been
excessively studied in the signal processing literature. In [5]
analysis is done on the base-band variant of a single tone
with unknown amplitude, frequency and phase, corrupted
with complex Gaussian noise. Maximum Likelihood (ML)
algorithms were derived in order to estimate the unknown
parameters. In particular, it was shown that the ML estimator
of the frequency is maximal index of the DFT transform of

Figure 1: QTE based indoor positioning



the signal.
In many practical scenarios, including WiFi and BLE, the

protocol is based on multiple carriers transmission signal that
usually consists of multiple tones. MUSIC algorithm [6] is
suitable to accommodate this scenario. The MUSIC algorithm
detects frequencies in a signal by performing an eigenvalue
decomposition on the covariance matrix of a data vector
obtained from the samples of the received signal. It reduces
the undesired peaks by averaging, using a frequency estimation
function. The frequencies of the complex exponentials are in
the location of the p largest peaks in of the function. In [7],
it was shown that the capabilities of the MUSIC algorithm
might be enhanced by development of two techniques to
allow the algorithm to operate on a single snapshot and at
a much lower computational cost than previously possible.
ESPRIT algorithm [8] is another technique used to determine
parameters of a mixture of sinusoidals in background noise.
In comparison to MUSIC, it achieves a significant reduction
in computational complexity by imposing a constraint on
the structure of the sensor array. Furthermore, ESPRIT can
handle as many sources as MUSIC by employing overlapping
subarrays.

There are also methods that base their estimation solely on
the phase of the signal, thus, completely neglecting its ampli-
tude. In [9], the authors present ways to estimate frequency by
performing linear regression on the phase of the signal. In [3],
FFT was applied on the Power Spectral Density (PSD) of the
signal’s phase. It was shown that qualitative estimation can be
achieved without extra calculation and get error reduction with
comparison to other measurement tools. In [4], a phase-based
ranging solution was introduced for Bluetooth Low Energy
(BLE) standards, in which tones where exchanged in the entire
2.4 GHz frequency band in order to overcome the multipath
fading problem. Also, the effect of BLE packet spacing was
analytically studied and the effect on ranging accuracy was
shown on hardware implementation.

A common obstacle in the ranging problem for the men-
tioned methods is a multipath fading. Multipath propagation
effects [10] are among the most troublesome aspects of indoor
radio communications. A multipath effect occurs when the
same signal arrives simultaneously from multiple directions.
Since every path the signal travels has different channel
characteristics, it might interfere with another copy of itself
at the receiver, both in a constructive and a destructive way.
When modeling such dynamic environments, several problems
arise [11]. One is that a signal might have its Line-Of-Sight
(LOS) blocked by some object, attenuating the most direct
paths signal. Other more subtle problems are the different
characteristics of fading introduced for different kinds of
obstacles. Some materials are prone to reflect radio waves,
while others simply attenuate it. As it is virtually impossible
to identify a material and determine its properties in real time,
multipath effects are better compensated for in a statistical
sense. The effects should be most pronounced when using
RSSI based systems, but they also might affect both Time
Of Flight (ToF) [2], and phase-based ones, albeit not as

greatly. Also, another problem that we might encounter is the
discontinuity of the phase, since it is limited to 0−2π, this adds
range ambiguity and a serious challenge to range estimation.
To solve the ambiguity added by definition of phase and multi-
path fading, phase changes of multi-frequencies are measured
based on Multi-Carrier Phase Difference procedure (MCPD)
in order to estimate the range [4].

In this paper we will propose and compare different methods
to estimate range from a set of noisy measurements in a
multipath environment. The main contribution of this work
is a quantitative assessment of the various approaches both
using Monte-Carlo simulations on synthetic data. Furthermore,
we extend the existing approaches to scenarios where only a
subset of the data is available and some information may be
absent.

II. MODEL DESCRIPTION

In this paper we consider a multiple orthogonal channel
transmission protocol. The WiFi or BLE terminals, such as
Access Point (AP) and Network Interface Card (NIC), trans-
mits a single tone in every one of the channel bands. This
tone is received by the initiator and reflector and transmitted
back to the sensor with appropriate phase, thus resembling the
operation of a radar. The noisy signal, including its multipath
echos, is received by the sensor, demodulated, sampled and
then DFT processed. Then, the complex number corresponding
to the maximal absolute value of the DFT, is extracted and
provided to the estimator. Thus, one sample of the received
base-band signal at band k is given by:

Yk = A0 · e
j4πr∆f k

c +

M∑
m=1

Am · e
j4πrm∆f k

c + Zk, (1)

where:

• A0 - the complex amplitude of the LOS signal;
• r - the range between terminals;
• ∆f - spacing between frequency bands;
• c - speed of light;
• M - number of multipaths, unknown integer;
• {rm}Mm=1 - multipaths lengths, unknown parameters but

strictly greater than r;
• {Am}Mm=1 - complex amplitudes of the multipath signals;
• {Zk}Kk=1 - i.i.d. Complex Gaussian random variables with

zero mean and variance σ2, i.e., Zk ∼ CN (0, σ2).

Our goal in this work is to find an optimal estimator of r
based on the measurements vector (Y1,Y2, . . . ,YK) subject
the criterion of minimal Mean Square Error (MSE).

Furthermore, we intend to test a variety of solution ap-
proaches to range estimation with incomplete data, and to
evaluate the correlation between resolution and accuracy.

In the following subsection we derive a processing-
independent, analog resolution of the presented model.



A. Analog Resolution

Assume noiseless and echo-less environment with target
located at location r. The received signal at frequency band k
is given by:

Yk = A0 · e
j4πr∆f k

c . (2)

Now, consider the sum of Yk which is equivalent to looking
on the zero index of the DFT.

SN (r) =

N−1∑
k=0

Yk = A0
e
j2πr∆fN

c

e
j2πr∆f

c

sin
(

2πr∆fN
c

)
sin
(

2πr∆f

c

) . (3)

The relative intensity is defined as

g(r) ,

∣∣∣∣SN (r)

A0

∣∣∣∣ =

∣∣∣∣∣∣
sin
(

2πr∆fN
c

)
sin
(

2πr∆f

c

)
∣∣∣∣∣∣ . (4)

Note that g(r) ≤ N . Analog resolution is defined as half power
intensity, i.e.,

δranalog , min
r≥0

{
r : g(r) =

N√
2

}
. (5)

Figure 2 shows g(r) for ∆f = 312.5 [KHz] and N = 245,
where the highlighted point represents the calculated analog
resolution, δranalog = 0.00708. For a general N , δranalog can
be approximated using

δranalog ≈
c

∆f
· 0.4252

N2
. (6)

We emphasize that the meaning of the analog resolution
here is that it is not possible to separate between two targets
in a distance smaller than δranalog, as if they were in the
same position. Of course, we can get a better accuracy by
zero padding under high SNR conditions.
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Figure 2: Analog resolution

III. METHODS

In this section, we will briefly describe a number of algo-
rithms that will be evaluated and compared for the given range
estimation problem. We will also elaborate here regarding
possible extension of the existing methods to handle missing
information. The various methods we present are mainly
divided into two groups: those based solely on the phase of
the received tones, which will be described first; and those
which utilize the full complex measurements vector.

In the simulations shown in the following figures of this
section, the range is chosen to be 10 · Dr where ∆f =
312.5 [kHz], Dr = c

2·∆f ·N and N = 245. Also, the high
SNR signal has a noise variance σ = 0.01 and multi-path
amplitude 0.1, whereas the low SNR signal has variance σ = 2
and multi-path amplitude 0.5.

A. Principle of Distance estimation using Multi Carrier Phase
Difference (MCPD)

The phase-shift introduced by a pure LOS component of
the signal in (13) is a linear function of both frequency index
k, and range r, i.e.,

φ(k, r) =
4πr∆fk

c
mod 2π. (7)

A typical graph of (7) is illustrated in Figure 3.
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Figure 3: Phase with one multipath fading

From the relation in (7) we observe that by measuring the
slope of the unwrapped phase, denoted as φUW (·, r), as a
function of the frequency index we can ideally have a perfect
estimation of the distance between the devices.

In order to solve the half-wavelength ambiguity with respect
to r, we measure the phase shift at at least two distinct tones:

∆φ[k0, k1] , φUW (k1, r)− φUW (k0, r) =
4πr∆f (k1 − k0)

c
.

(8)
Since ∆f , c, kj are known parameters, the distance estima-

tion becomes [4]:

r̂ =
c

4π∆f

∆φ[k0, k1]

k1 − k0
mod

c

4∆f
. (9)

The aforementioned procedure can be further extended to
consolidate K tones. We denote ∆φ[k] , ∆φ[k − 1, k] as
the phase difference between the k-th and the k − 1 tones, to
obtain the following vector of distance estimators:




r̂1

r̂2

...
r̂K−1

 =
c

4π∆f
×


∆̂φ[1]

∆̂φ[2]
...

∆̂φ[K − 1]

 (10)

Equation (10) contains a vector of phase-based estimators.
Although taking the mean from (10) is the most reasonable
method to obtain the combined estimator, we have observed
that taking the median usually outperforms the expectation
approach for real data measurement, this probably is due to
numerous outliers present in the data. The estimation scheme
is outlined in Algorithm 1, where the median range of the
ranges vector in (10) gave a better estimation as it reduces the
effect of outliers.

Algorithm 1 Multi Carrier Phase Derivative Algorithm
1: function [range] = MCPD(angle,Df)
2: c = 299792458;
3: dvec = diff(angle); % Vector of phase differences
4: rvec = c/(4*Pi*Df); % Vector of range estimators
5: range = median(rvec); % Find the median (eliminates outliers);
6: end

This estimation scheme can be extended to incorporate
missing data scenarios by taking into account the index
differences in the denominator of (9) while evaluating (10).

B. Linear Phase Regression

Here we present a Least Squares approach to estimate the
range in (7). Since each discontinuity in the phase function
has a 2π period, then in order to calculate the slope and get
the range r, we can do phase unwrapping by adding 2π in
every discontinuity, and then do a linear regression which fits
the unwrapped phase to a linear curve. An example is shown
in Figure 4, where specifically in this example we used the
high SNR noise parameters described in the beginning of the
section, but we used σ = 0.5 instead of σ = 0.01 to emphasize
the effect of the noise on the linear regression fitted slope.
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Figure 4: Phase unwrap example

If there is a missing data set among a band of channels, we
suggest that the linear regression should be done assuming that
the missing channels are ignored.

C. DFT on phase of the complex signal

The periodic nature of the signal’s phase, as can be observed
in Figure 3, can be utilized to extract the slope by calculating
the DFT on signal’s phase, i.e. {^Yk}Kk=1. The index of
the absolute maximum value of the Fourier transform will
give us the fundamental frequency of the signal’s phase. The
fundamental frequency has one-to-one correspondence with
the range.

Missing measurements can be replaced with zeros without
affecting the proposed here estimation scheme, and has a
similar interpretation to the regular zero padding.

D. DFT of the complex signal

As can be interpreted from equation (13), the LOS compo-
nent of the sampled signal is given by:

sk = A0 · e
j4πr∆f k

c . (11)

It was shown in [5] that the ML frequency estimator of
a signal contaminated in white Gaussian noise is related to
the maximum index of the corresponding DFT of the signal
defined as:

DFT
(
{Yk}Kk=1

)
[n] =

K∑
k=1

Yk · e−
j2πnk
K . (12)

Thus, we expect to observe the highest peak in the closest
integer that satisfies n

K =
2r∆f

c .
Figure 5 shows a comparison between methods mentioned

above by applying them on a high SNR signal and a low SNR
signal. The DFT on the signal gives more accurate results,
regardless of the noise level, making it the better choice here.

Extension of the proposed scheme here to handle incomplete
measurements can be performed in a similar manner to the one
described for applying the DFT on signal’s phase.

E. MUSIC algorithm

The MUltiple SIgnal Classification (MUSIC) algorithm is a
frequency estimation technique [6] in which we assume that
Yn is a random process that consists of p complex exponentials
in white noise Zn with variance σ2

z :

Yn =

p∑
i=1

Ai · ejnωi + Zn, (13)

Let Rx be the M × M autocorrelation matrix of Yn,
with M > p + 1. Then, we calculate the eigenvectors
ν1 . . . νp, νp+1, . . . , νM of Rx, where ν1 corresponds to the
largest eigenvalue of Rx, ν2 correspond to the second largest
eigenvalue, etc.

The MUSIC algorithm tries to reduce the undesired peaks
by averaging, using the frequency estimation function:

P̂MU (ejω) =
1∑M

i=p+1 | eHνi |2
, (14)
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Figure 5: DFT on complex signal and its phase

where H refers to the hermitian conjugate, and the vector e
is defined as follows:

e =
(
1 ejω e2jω . . . ej(M−1)ω

)T
. (15)

According to the frequency estimation function, the frequen-
cies of the complex exponentials are in the location of the p
largest peaks in PMU (ejω).

Algorithm 2 The MUSIC Algorithm
function Px = music(x,p,M)

2: if (M < p+1 || length(x) < M)
error(’Size of R is inappropriate’)

4: R = convar(x,M);
[v,d] = eig(R);

6: [y,i] = sort(diag(d));
Px = 0;

8: for j = 1 : M-p
Px = Px+abs(fft(v(:,i(j)),1024));

10: Px = -20 * log10(Px);
end

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

200

400

600

800

1,000

1,200

1,400

Normalized frequency (×π rad/sample)

|P̂
M
U
(e
jω
)|

MUSIC on Signal

Orig. Range = 19.6, Estimated Range = 18.7

Figure 6: Simulation of the MUSIC algorithm

In Figure 6 we can see a definite peak which indicates
the "normalized frequency" of the frequency-sampled vector,
which is denoted ω̄0. Using (9) we can derive the range as
shown in

r̂ =
c

4π∆f
ω̄0. (16)

Note that the simulation was held on the high SNR signal
with parameters described in the beginning of the section.

IV. PERFORMANCE EVALUATION

In this section, the methods mentioned in Section III are
evaluated and compared for various channel scenarios. Data
for this simulation was generated based on the synthetic model
described by (13). We use MSE as the performance metric in
this section.

We start by comparing the performance of various algo-
rithms versus SNR. The frequency estimation model described
here is a nonlinear estimation and therefore threshold effects
are expected. That is, for SNR values beneath a certain
threshold there is usually a rapid increase in MSE as SNR
further decreases. The output of the Monte Carlo experiment
for fixed parameters of the LOS signal and its multipath echoes
is shown in Figure 7.

Our first observation from Figure 7 is that the DFT on signal
method outperforms all other in terms of MSE. Furthermore,
since systems does not usually operate below the threshold
level, we choose SNR level of 20 dB as a reference point for
subsequent calculations.

Another valuable insight added to the graph is the
Cramér–Rao Lower Bound (CRLB), which can be derived in
a similar manner as in [5], and is given by

MSE ≥ CRLB =
3c2σ2

4A2
0π

2∆2
fN(N2 − 1)

. (17)

Furthermore, it is quite interesting to analyze how the
behavior changes when there are missing bands in the received
signal. We present the Monte Carlo results in Figure 8 for this
circumstance, where the bands (20 : 40) are excluded from
total frequency band [1 : 245].
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Figure 7: MSE versus SNR
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Figure 8: MSE versus SNR for a signal with missing data

We can see from this behavior that a missing band of
channels can still produce reasonable results that are consistent
with a full signal analysis. We also conducted a simulation
showing the error for different multipath amplitude ratios
relative to the original signal, while fixing SNR = 20 dB.
Figure 9 shows the different methods’ immunity to multipath.
We conclude that multipath signal amplitude slightly affects
DFT and phase unwrap methods, while it significantly affects
MUSIC. Also we observe the dominance of the DFT on signal
method, which is able to distinguish the true range for all
practical values of the multipath amplitude.

V. CONCLUSION

Using a phase-based approach, a quantitative examination
of range estimation methods utilizing synthetic data has been
conducted in this work. We conducted the tests on a high
and low SNR signal, assuming a multipath environment. We
concluded that the DFT on signal method produced the best
results as measured by MSE versus SNR in both scenarios
with and without missing data sets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

MP amplitude

E
rr
or

[m
]

Error vs. MP amplitude

DFT on signal
DFT on phase
phase unwrap
MUSIC

Figure 9: Error for different multipath amplitude ratios

VI. ACKNOWLEDGEMENTS

The authors are grateful to Intel (Israel) and in particular
to Dr. Ilan Sutskover for the kind support of this work. The
authors would also like to thank Prof. David Malah, head of
Signal and Image Processing Laboratory (SIPL) at Andrew and
Erna Viterbi Faculty of Electrical and Computer Engineering
in the Technion – Israel Institute of Technology, to Nimrod
Peleg, SIPL’s chief engineer, and to the entire SIPL team for
their support, advice, and helpful comments.

REFERENCES

[1] M. Gunia, A. Zinke, N. Joram, and F. Ellinger, “Setting up a
Phase-Based Positioning System using Off-the-Shelf Components,” in
2017 14th Workshop on Positioning, Navigation and Communications
(WPNC), pp. 1–6, IEEE, 2017.

[2] M. Pelka, C. Bollmeyer, and H. Hellbrück, “Accurate Radio Distance
Estimation by Phase Measurements with Multiple Frequencies,” in 2014
International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 142–151, 2014.

[3] G. von Zengen, Y. Schröder, S. Rottmann, F. Büsching, and L. C. Wolf,
“No-Cost Distance Estimation Using Standard WSN Radios,” in IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, pp. 1–9, 2016.

[4] P. Zand, J. Romme, J. Govers, F. Pasveer, and G. Dolmans, “A high-
accuracy phase-based ranging solution with Bluetooth Low Energy
(BLE),” in 2019 IEEE Wireless Communications and Networking Con-
ference (WCNC), pp. 1–8, 2019.

[5] D. Rife and R. Boorstyn, “Single-Tone Parameter Estimation from
Discrete-Time Observations,” IEEE Transactions on information theory,
vol. 20, no. 5, pp. 591–598, 1974.

[6] M. H. Hayes, “Statistical Digital Signal Processing and Modeling,” in
New York: Wiley, 1996.

[7] Q. Ren and A. Willis, “Extending MUSIC to single snapshot and on
line direction finding applications,” in IET, 1997.

[8] R. Roy and T. Kailath, “ESPRIT-Estimation of Signal Parameters Via
Rotational Invariance Techniques,” IEEE Transactions on acoustics,
speech, and signal processing, vol. 37, no. 7, pp. 984–995, 1989.

[9] R. G. McKilliam, B. G. Quinn, I. V. L. Clarkson, and B. Moran,
“Frequency Estimation by Phase Unwrapping,” IEEE transactions on
signal processing, vol. 58, no. 6, pp. 2953–2963, 2010.

[10] B. Sklar, “Rayleigh Fading Channels in Mobile Digital Communication
Systems. ii. mitigation,” IEEE Communications magazine, vol. 35, no. 7,
pp. 102–109, 1997.

[11] C.-C. Pu and W.-Y. Chung, “Mitigation of Multipath Fading Effects
to Improve Indoor RSSI Performance,” IEEE Sensors Journal, vol. 8,
no. 11, pp. 1884–1886, 2008.


